AIMD. AI for microscopy denoising - dataset 1

DOI

The dataset contains the first of two processed open-source datasets used in the Github repository:

https://github.com/IPMI-ICNS-UKE/AIMD.AI-for-microscopy-denoising

The AIMD Github repository is demonstrating the use of open-source microscopy data for deep learning based image denoising and transfer learning as showcased in:  Lohr, D., Meyer, L., Woelk, LM., Kovacevic, D., Diercks, BP., Werner, R. (2025). Deep Learning-Based Image Restoration and Super-Resolution for Fluorescence Microscopy: Overview and Resources. In: Diercks, BP. (eds) T Cell Activation. Methods in Molecular Biology, vol 2904. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-4414-0_3

The folder models contains pre-trained denoising models generated using the code of the AIMD repository.

The original open-source data is the "Fluorescence Microscopy Denoising (FMD) dataset" - CC BY-SA 4.0 license

https://curate.nd.edu/articles/dataset/Fluorescence_Microscopy_Denoising_FMD_dataset/24744648
8 bit image data, filetype: png

 

Identifier
DOI https://doi.org/10.25592/uhhfdm.16868
Related Identifier IsPartOf https://doi.org/10.25592/uhhfdm.16867
Metadata Access https://www.fdr.uni-hamburg.de/oai2d?verb=GetRecord&metadataPrefix=oai_datacite&identifier=oai:fdr.uni-hamburg.de:16868
Provenance
Creator Lohr, David ORCID logo; Werner, René ORCID logo
Publisher Universität Hamburg
Publication Year 2025
Rights Creative Commons Attribution Share Alike 4.0 International; Open Access; https://creativecommons.org/licenses/by-sa/4.0/legalcode; info:eu-repo/semantics/openAccess
OpenAccess true
Representation
Language English
Resource Type Dataset
Discipline Medicine