Simulated data for searches for electroweakino dark matter in the monojet channel

DOI

Dataset associated with the "Machine Learning Electroweakino Production" publication (https://doi.org/10.48550/arXiv.2411.00093).

In this study, we explore the possibility of enhancing searches for supersymmetric dark matter particles at the LHC in the monojet channel, by using Graph Neural Networks (GNNs). We train an ensemble of 10 networks for Wino- and Higgsino-like neutralinos, and we use it on Bino, Wino, and Higgsino test samples in order to derive the sensitivity achievable at the end of Run-3 and High Luminosity phases of the LHC.

The dataset contains 5 folders: 1) wino_train, 2) wino_val, 3) higgsino_train, 4) higgsino_val, 5) test.

Each "train" folder contains 10 files (archives) corresponding to an ensemble of 10 networks, for either Wino- or Higgsino-like neutralino. "Val" folders contain validation data for the ensemble, 10 files per each neutralino type. Validation and training data are all for the same mass point: neutralino mass 300 GeV and squark mass 2.2 TeV.

The "Test" folder contains test data for SM, Binos, Higgsinos, and Winos. For neutralino test data, the archives contain all 30 mass points. For the test set, masses of neutralinos vary between 200 GeV and 1100 GeV, while the masses of squarks vary between 2.0 TeV and 3.0 TeV.

Data was produced using Monte Carlo simulation methods, with MadGraph5, Pythia, and Delphes. The published data was subject to preselection, described in the associated article.

All files are in the awkd0 format. Example code demonstrating how to read the files and use them for NN training can be found in the official repository of the project: https://github.com/Rav2/monojet

SuSpect, 3.1.1

SUSY-HIT, 1.5a

MadGraph5, 2.7.3

FastJet, 3.4.0

ExRootAnalysis, 1.1.2

Delphes, 3.4.3.pre12

CERN ROOT, 6.24/02

python, 3.8.10

numpy, 1.24.4

awkward0, 0.15.5

tensorflow, 2.7.0

pandas, 1.4.1

Identifier
DOI https://doi.org/10.57745/RVC6WQ
Related Identifier IsCitedBy https://doi.org/10.48550/arXiv.2411.00093
Metadata Access https://entrepot.recherche.data.gouv.fr/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.57745/RVC6WQ
Provenance
Creator MASELEK, Rafal ORCID logo
Publisher Recherche Data Gouv
Contributor MASELEK, Rafal; SAKURAI, Kazuki; NOJIRI, Mihoko; Kazuki Sakurai; Mihoko Nojiri; Centre national de la recherche scientifique; Faculty of Physics; Entrepôt-Catalogue Recherche Data Gouv
Publication Year 2024
Funding Reference Polish National Science Centre 2021/41/N/ST2/00972 ; Polish National Science Centre 2020/38/E/ST2/00243 ; Polish National Agency for Academic Exchange BPN/BEK/2022/1/00253/DEC/1 ; Japan Society for the Promotion of Science 22H05113 ; Japan Society for the Promotion of Science 22K03629 ; U.S. National Science Foundation PHY-2210452
Rights etalab 2.0; info:eu-repo/semantics/openAccess; https://spdx.org/licenses/etalab-2.0.html
OpenAccess true
Contact MASELEK, Rafal (CNRS - Personnels des unités); SAKURAI, Kazuki (University of Warsaw); NOJIRI, Mihoko (KEK)
Representation
Resource Type Dataset
Format application/x-gzip; text/markdown
Size 6442927794; 14244494109; 14244553137; 14247628211; 14245665065; 14244981090; 14246974854; 14243197044; 14247967797; 14249694279; 14245923228; 6108545184; 6108474430; 6105379637; 6102137705; 6102821616; 6100842183; 6104569491; 6099835453; 6098114572; 6107121148; 10455820937; 1534; 12703211649; 14066719510; 14071970822; 14066799363; 14067073318; 14069130011; 14068435208; 14066006649; 14069622844; 14067247116; 6028659248; 6031991149; 6026747874; 6031936677; 6031633636; 6029609900; 6030271894; 6032701768; 6029106220; 6031489736; 8384866315
Version 1.0
Discipline Physics; Natural Sciences