Preoperative endometrial cancer risk stratification in endometrial cancer (ENDORISK) by a Bayesian network model: an ENITEC development and external validation study

DOI

Imputed dataset used for development of ENDORISK Bayesian network, to predict lymph node metastasis in endometrial cancer. These data were retrospectively collected from ten participating centers across Europe.These data belong to and include all variables for the statistical analyses conducted in the paper “Preoperative endometrial cancer risk stratification in endometrial cancer (ENDORISK) by a Bayesian network model: an ENITEC development and external validation study”, by Casper Reijnen and colleagues. The objective of this paper was to develop and validate a preoperative Bayesian network to predict the risk of lymph node metastasis and survival in patients surgically treated for endometrial cancer.Within the European Network for Individualized Treatment of Endometrial Cancer (ENITEC) consortium. Ten participating centers included patients treated between February 1995 and August 2013 for International Federation of Gynecology and Obstetrics (FIGO) stage I-IV endometrioid endometrial carcinoma (EEC), or non-endometrioid endometrial carcinoma (NEEC).

Identifier
DOI https://doi.org/10.17026/DANS-XXB-2RCU
Metadata Access https://lifesciences.datastations.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.17026/DANS-XXB-2RCU
Provenance
Creator C. Reijnen; E. Gogou; N.C.M. Visser; H. Engerud; J. Ramjith; L.J.M. van der Putten; K. van der Vijver; M. Santacana; P. Bronsert; J. Bulten; M. Hirschfeld; E. Colas; A. Gil-Moreno; A. Reques; G. Mancebo; C. Krakstad; J. Trovik; I.S. Haldorsen; J. Huvila; M. Koskas; V. Weinberger; M. Bednarikova; J. Hausnerova; A.A.M. van der Wurff; X. Matias-Guiu; F. Amant; H.V.N. Küsters-Vandevelde; L.F.A.G. Massuger; P.J. Lucas; J.M.A. Pijnenborg
Publisher DANS Data Station Life Sciences
Contributor RU Radboud University
Publication Year 2020
Rights DANS Licence; info:eu-repo/semantics/restrictedAccess; https://doi.org/10.17026/fp39-0x58
OpenAccess false
Contact RU Radboud University
Representation
Resource Type Dataset
Format text/xml; text/plain; application/pdf; application/zip; text/csv
Size 11909; 788; 64614; 70614; 29179; 130007
Version 1.0
Discipline Life Sciences; Medicine