Microbial community composition of sandy intertidal sediments of Sylt-Rømø Basin, Wadden Sea

DOI

Molecular biological methods were used to investigate the microbial diversity and community structure in intertidal sandy sediments near the island of Sylt (Wadden Sea) at a site which was characterized for transport and mineralization rates in de Beer et al., (2005, hdl:10013/epic.21375). The sampling was performed during low tide in the middle of the flat, approximately 40 m in the offshore direction from the high water line on October 6, 1999, March 7, 2000, and July 5, 2000. Two parallel cores were collected from each season for molecular analyses. Within 2 h after sampling the sediment cores were sub-sampled and fixed in formaldehyde for FISH analysis. The cells were hybridized, stained with 4',6'-diamidino-2-phenylindole (DAPI) and microscopically counted as described previously [55]. Details of probes and formamide concentrations which were used are shown in further details. Counts are reported as means calculated from 10-15 randomly chosen microscopic fields corresponding to 700-1000 DAPI-stained cells. Values were corrected for the signals counted with the probe NON338. Fluorescence in situ hybridization (FISH)with group-specific rRNA-targeted oligonucleotide probes were used to characterize the microbial community structure over depth (0-12 cm) and seasons (March, July, October). We found high abundances of bacteria with total cell numbers up to 3×109 cells ml-1 and a clear seasonal variation, with higher values in July and October versus March. The microbial community was dominated by members of the Planctomycetes, the Cytophaga/Flavobacterium group, Gammaproteobacteria, and bacteria of the Desulfosarcina/Desulfococcus group. The high abundance (1.5×107 - 1.8×108 cells/ml accounting for 3-19% of all cells) of presumably aerobic heterotrophic polymer-degrading planctomycetes is in line with the high permeability, deep oxygen penetration, and the high rates of aerobic mineralization of algal biomass measured in the sandy sediments by de Beer et al., (2005, hdl:10013/epic.21375). The high and stable abundance of members of the Desulfosarcina/Desulfococcus group, both over depth and season, suggests that these bacteria may play a more important role than previously assumed based on low sulfate reduction rates in parallel cores de Beer et al., (2005).

Supplement to: Musat, Niculina; Werner, Ursula; Knittel, Katrin; Kolb, Steffen; Dodenhof, Tanja; van Beusekom, Justus; de Beer, Dirk; Dubilier, Nicole; Amann, Rudolf (2006): Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Systematic and Applied Microbiology, 29(4), 333-348

Identifier
DOI https://doi.org/10.1594/PANGAEA.858490
Related Identifier https://doi.org/10.1016/j.syapm.2005.12.006
Related Identifier https://store.pangaea.de/Publications/Musat-etal_2006/Oligonucleotide-probes_Musat-etal_2006.pdf
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.858490
Provenance
Creator Musat, Niculina (ORCID: 0000-0001-9539-189X); Werner, Ursula; Knittel, Katrin ORCID logo; Kolb, Steffen ORCID logo; Dodenhof, Tanja; van Beusekom, Justus; de Beer, Dirk ORCID logo; Dubilier, Nicole (ORCID: 0000-0002-9394-825X); Amann, Rudolf ORCID logo
Publisher PANGAEA
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 362 data points
Discipline Earth System Research
Spatial Coverage (8.433 LON, 55.033 LAT); Wadden Sea, North Sea, Germany
Temporal Coverage Begin 1999-06-22T00:00:00Z
Temporal Coverage End 2000-07-05T00:00:00Z