MM Algorithm for General Mixed Multinomial Logit Models (replication data)

DOI

This paper develops a new technique for estimating mixed logit models with a simple minorization-maximization (MM) algorithm. The algorithm requires minimal coding and is easy to implement for a variety of mixed logit models. Most importantly, the algorithm has a very low cost per iteration relative to current methods, producing substantial computational savings. In addition, the method is asymptotically consistent, efficient and globally convergent.

Identifier
DOI https://doi.org/10.15456/jae.2022326.0703360694
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:775453
Provenance
Creator James, Jonathan
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2017
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics