OpenStreetMap land use for Europe "Research Data"

DOI

OSMLanduse data is a scientific dataset generated within the scope of the Horizon 2020 - LandSense project. It is a classification of Sentinel-2 imagery using a deep learning model trained on OSM landuse and landcover features. The data might contain errorneous classifications. The classification values in the raster dataset correspond to a subset of the well-known CORINE LandCover Classification. Use it with caution and at your own risk.

Version 2: The files are now available as Cloud Optimized GeoTIFFs which require less memory space.

Identifier
DOI https://doi.org/10.11588/data/IUTCDN
Metadata Access https://heidata.uni-heidelberg.de/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.11588/data/IUTCDN
Provenance
Creator Schultz, Michael; Li, Hao ORCID logo; Wu, Zhaoyhan ORCID logo; Wiell, Daniel; Auer, Michael (ORCID: 0000-0002-6303-596X); Zipf, Alexander ORCID logo
Publisher heiDATA
Contributor Schultz, Michael
Publication Year 2024
Funding Reference Horizon 2020 LandSense, 689812
Rights CC BY 4.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/licenses/by/4.0
OpenAccess true
Contact Schultz, Michael (Tübingen University Geoinformatics)
Representation
Resource Type Dataset
Format image/tiff; application/octet-stream; text/x-qml
Size 108614850; 54429822; 145221377; 80029843; 8504657; 95024933; 488811446; 78755254; 37902451; 227255345; 635572216; 214218006; 89408078; 136431064; 502628548; 81651330; 92642109; 5012101; 706127; 72103689; 463344788; 162839702; 559; 2849; 131489302; 40044741; 31276521; 727827557; 576912122; 416240295
Version 2.0
Discipline Earth and Environmental Science; Environmental Research; Geosciences; Natural Sciences