Snow depth, sea ice thickness and interface temperatures derived from measurements of SIMBA buoy 2017T45

DOI

The Snow and Ice Mass Balance Array (SIMBA) is a thermistor string type IMB (Jackson et al., 2013) which measures the environmental temperature SIMBA-ET and a temperature change around the thermistors after a weak heating is applied to each sensor (SIMBA-HT). SIMBA 2017T45 (a.k.a. Akva_01) is an autonomous instrument that was installed on landfast sea ice at Svalbard, Arctic (Svalbard FAABulous in 2017) as part of the project FAABulous. Its thermistor chain is 5 m long, and equipped with 240 thermistors (Maxim Integrated DS28EA00) at a spacing of 2 cm. Based on a manual classification method, the SIMBA-ET and SIMBA-HT were processed to obtain snow depth and ice thickness (smoothed with a 3-day running mean), as well as the thermistor number, the vertical position Z relative to the snow-ice interface and the measured SIMBA-ET at each detected interface (atmosphere-snow, snow-ice and ice-ocean) for the period between 2017-03-10T00:00:39 and 2017-05-03T06:00:39. To do this, we combined two derivatives of measured temperatures (the ET vertical gradient and HT rise ratio) to reduce the detection uncertainty of all interfaces considered. The snow or ice surface, consequentially the snow depth, is determined by the ET vertical gradient. Potential formation of snow ice is not explicitly considered in this data set, but may occur as depicted by vertical changes of the snow-ice interface position. The ice-ocean interface is usually determined using the HT rise ratio and serves as the lower limit for ice thickness. Overall, the accumulated error is 2 to 4 times the sensor spacing for both the snow depth and ice thickness. For interface temperatures, individual sensors in the chain measure with a temperature resolution of 0.0625°C, with the overall accuracy landing in the range of ± 2°C (Jackson et al., 2013). After the snow cover has melted, negative values for snow depth may indicate the onset of ice surface melt.

Identifier
DOI https://doi.pangaea.de/10.1594/PANGAEA.973383
Related Identifier IsPartOf https://doi.pangaea.de/10.1594/PANGAEA.973193
Related Identifier IsDerivedFrom https://doi.pangaea.de/10.1594/PANGAEA.967892
Related Identifier References https://doi.org/10.1175/jtech-d-13-00058.1
Related Identifier HasMetadata https://data.meereisportal.de/relaunch/buoy.php?lang=en&active-tab1=method&active-tab2=buoy&buoyname=2017T45&singlemap=
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.973383
Provenance
Creator Preußer, Andreas ORCID logo; Nicolaus, Marcel ORCID logo; Hoppmann, Mario ORCID logo
Publisher PANGAEA
Contributor Preusser, Andreas
Publication Year 2024
Funding Reference Horizon 2020 https://doi.org/10.13039/501100007601 Crossref Funder ID 101003472 https://doi.org/10.3030/101003472 Pan-Arctic observing System of Systems: Implementing Observations for societal Needs (Arctic PASSION)
Rights Creative Commons Attribution 4.0 International; Data access is restricted (moratorium, sensitive data, license constraints); https://creativecommons.org/licenses/by/4.0/
OpenAccess false
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 2795 data points
Discipline Earth System Research
Spatial Coverage (16.706W, 77.850S, 16.723E, 77.900N); Svalbard
Temporal Coverage Begin 2017-03-10T00:00:39Z
Temporal Coverage End 2017-05-03T06:00:39Z