Crosslinking Super Yellow to produce Super OLEDs: Crosslinking with Azides Enables Improved Performance [Data]

DOI

An increasing number of organic light-emitting diodes (OLEDs) is nowadays based on the use of polymers as the emissive material. For this material class in particular, solution-processing of the OLEDs has gained traction in both research and industry. However, in order to access multilayer material systems, orthogonal solvents must be used to prevent dissolution of previously prepared layers. The use of crosslinkers can facilitate this production method by reducing the number of orthogonal solvents needed, since insoluble networks are generated. In this work, a novel bisazide crosslinker is employed to insolubilize Super Yellow, a polyphenylene-vinylene emitter. This allows the use of an additional poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) electron blocking layer (EBL) from the same solvent. Devices including the blocking layer show improved efficacies compared to reference devices without the additional EBL, while also maintaining the emission spectrum. Using the upscalable technique of doctor blading, OLEDs were fabricated which showed a particularly noticeable effect of the blocking layer, with a nearly twofold increase in luminance and a 56 % increase in current efficacy.

MestReNova by Mestrelab Research S.L, 14.1.2-25024

OriginPro 2021, 9.8.0.200

Identifier
DOI https://doi.org/10.11588/data/K7GEM8
Metadata Access https://heidata.uni-heidelberg.de/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.11588/data/K7GEM8
Provenance
Creator Ehjeij, Daniel; Hengge, Michael; Hänsch, Paul; Benneckendorf, Frank S.; Freudenberg, Jan; Bunz, Uwe H. F. Bunz; Müllen, Klaus; List-Kratochvil, Emil J. W.; Hermerschmidt, Felix
Publisher heiDATA
Contributor Ehjeij, Daniel; HySPRINT Innovation Lab
Publication Year 2022
Funding Reference DFG SFB 1249
Rights info:eu-repo/semantics/openAccess
OpenAccess true
Contact Ehjeij, Daniel (OCI, Universität Heidelberg)
Representation
Resource Type experimental data; Dataset
Format text/plain; application/zip
Size 98335; 98334; 70952; 70977; 70938; 13064538; 5158049
Version 1.1
Discipline Chemistry; Natural Sciences
Spatial Coverage OCI Heidelberg