High-resolution organic geochemical bulk parameter and biomarker records in sediment core PS100/270-1 from off eastern North Greenland

DOI

The Northeast Greenland continental shelf became one of the tipping elements in our climate system. Ongoing mass loss of the Greenland Ice Sheet, intensive sea-ice loss, the influence of warm, recirculating Atlantic Water towards the inner shelf, intensive bottom-melting at the underside of local marine-terminating outlet glaciers, glacier retreat and ice-sheet disintegration plays a fundamental role in terms of ongoing anthropogenic warming. Marine sediment Core PS100/270 was recovered aboard the RV Polarstern cruise PS100 in 2016 directly in front of 79NG on the inner NEG continental shelf (79°29.83'N, 18°8.40'W) in a water depth of 424 m. Chronology of the 9.51 m long Core PS100/270 is based on 13 AMS 14C ages, measured on benthic foraminifera. Sediment samples of Core PS100/270 were investigated to analyse microfossil assemblages, biomarker and bulk parameter proxy data. Additionally, the lithology, x-ray radiographs and geophysical properties (wet bulk density and magnetic susceptibility) were considered to perform a direct comparison with other records nearby e.g. PS2623. Four distinct lithofacies units were identified within this sedimentary record and are based on the, x-ray, lithology and biomarker data: stiff, overconsolidated diamiction; an indistinct/irregular laminated silty clay; a laminated silty clay and silty clay. Gravity Core PS100/270 was selected and studied in detail to reconstruct past sea-ice formation and ice-sheet dynamics, terrigenous input, primary productivity and the influence of warm, recirculating Atlantic Water on the shelf during the late Weichselian deglacial to late Holocene. The new high-resolution records presented here from the Northeast Greenland continental shelf provide helpful information about the pace of small- and large-scale climate variations, form the basis to improve future climate predictions and might serve as suitable analogue to ongoing anthropogenic warming by covering warmer periods in the past e.g. early Holocene Thermal Maximum.

Identifier
DOI https://doi.org/10.1594/PANGAEA.921185
Related Identifier https://doi.org/10.1029/2020PA004019
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.921185
Provenance
Creator Syring, Nicole ORCID logo; Lloyd, Jeremy M; Stein, Ruediger ORCID logo; Fahl, Kirsten ORCID logo; Roberts, Dave H; Callard, S Louise; Ó Cofaigh, Colm
Publisher PANGAEA
Publication Year 2020
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Bundled Publication of Datasets; Collection
Format application/zip
Size 4 datasets
Discipline Earth System Research
Spatial Coverage (-18.140 LON, 79.497 LAT)