FRPV - Presence of Rooftop Photovoltaic (RPV) systems on French buildings.

DOI

This dataset is the result of a convolutional neural network (CNN) trained for the detection of Rooftop Photovoltaic systems. It contains the geographical locations of the Rooftop PhotoVoltaic systems in France as predicted by the model.

This dataset is related to the scientific publication "Thebault, Nerot, Govehovitch, Ménézo - A comprehensive building-wise Residential Photovoltaic system detection in heterogeneous urban and rural areas: application to French territories" Applied Energy, 2025, doi.org/10.1016/j.apenergy.2025.125630

It contains the results of applying a CNN classification model to the buildings of each French department. The results are provided as geospatial vector data (in shapefile format: Shapefile). Among other information described in the Readme file, the 'Score' column/attribute corresponds to the predictive model's output for the corresponding building, representing the likelihood of a PV system being present. The score is a scalar value between 0 (the model is certain that there are no PV system) and 1 (the model is certain that a PV system is present). In the associated publication we consider a threshold of 0.5 (if Score 0.5, we consider that a PV system is present). As discussed in the associated publication, this threshold value can be adjusted depending on the application of the results.

Important information

1) A large part of the French metropolitan buildings are covered. In a further version all the French departments should be covered 2) Reliability of the results : It is important to refer to the associated publication to understand how reliable are the results. The 'Score' discuss above provide a quantification on the model's confidence in his classification. Additionnaly, the user can refer to Figure 18 and 19 of the associated publication to assess whether the models is in accordance with official registers of the energy provider.

sgis, 0.1

tensorflow, 2.9.3

Identifier
DOI https://doi.org/10.57745/BXXYW4
Metadata Access https://entrepot.recherche.data.gouv.fr/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.57745/BXXYW4
Provenance
Creator NEROT, Boris; THEBAULT, Martin ORCID logo
Publisher Recherche Data Gouv
Contributor THEBAULT, Martin; NEROT, Boris; GOVEHOVITCH, Benjamin; Centre national de la recherche scientifique; Laboratoire procédés énergie bâtiment; Université Savoie Mont Blanc; Entrepôt-Catalogue Recherche Data Gouv
Publication Year 2024
Funding Reference Agence nationale de la recherche ANR-18-EURE-0016
Rights etalab 2.0; info:eu-repo/semantics/openAccess; https://spdx.org/licenses/etalab-2.0.html
OpenAccess true
Contact THEBAULT, Martin (CNRS - Personnels des unités); NEROT, Boris (Université Savoie Mont Blanc)
Representation
Resource Type Dataset
Format text/plain; text/markdown; text/tab-separated-values; application/octet-stream; application/vnd.dbf; application/prj; application/vnd.shp; application/vnd.shx; application/x-dbf; application/x-esri-crs; application/x-esri-shape; text/comma-separated-values
Size 241; 239; 240; 238; 242; 237; 8539; 369; 379; 370; 363; 367; 373; 364; 374; 365; 362; 371; 368; 378; 361; 372; 366; 376; 357; 343; 340; 380; 377; 385; 375; 382; 358; 335; 0; 23311514; 452; 23350876; 1084340; 11326856; 25269218; 26497200; 1175396; 12298047; 206740316; 85728608; 3882540; 42974622; 200363096; 83319464; 3762780; 41902558; 167805620; 67258344; 3151372; 34809092; 80099036; 33175136; 1504300; 16487556; 60613796; 25068320; 1138380; 12561094; 208195532; 91138668; 3909868; 43553360; 159091364; 65345016; 2987724; 32943989; 96254660; 38570840; 1807692; 20041453; 106690382; 40934772; 2003668; 22103450; 110451962; 45554288; 2074308; 22881115; 163759898; 67193492; 3075396; 33846598; 169448276; 70212496; 3182220; 35593654; 421027688; 181125100; 7906716; 87072928; 238770404; 100025244; 4484044; 50173073; 77764130; 31321804; 1460452; 16196978; 194805926; 79434728; 3658420; 40298484; 340696868; 146088500; 6398156; 70518873; 149203478; 60365776; 2802036; 30346452; 132394370; 51075008; 2486372; 27742396; 162337910; 68837136; 3048692; 33715055; 305694152; 126742708; 5740828; 65121241; 94565570; 37543268; 1775972; 19610977; 252797306; 100126624; 4747460; 52490415; 137011358; 58017476; 2573076; 28481388; 177008498; 74042824; 3324196; 36724813; 231680912; 88212756; 4350908; 48270596; 153324176; 62978900; 2879420; 31932994; 340106858; 147247688; 6387076; 72454795; 245828372; 105436936; 4616588; 50944136; 360873932; 152169796; 6777068; 74834115; 124736594; 50423636; 2342564; 25782174; 513549350; 211414012; 9644212; 106793301; 317184224; 137491568; 5956604; 65296496; 329412554; 139990440; 6186244; 70311497; 125844620; 49473456; 2363372; 26107053; 204314246; 83984456; 3836980; 43257896; 295336388; 124138092; 5546316; 61528594; 96840410; 39658484; 1818692; 20114712; 224463194; 90621304; 4215364; 46475525; 152703920; 62614256; 2867772; 31835957; 210133406; 87376568; 3946260; 43652230; 107882330; 44377132; 2026052; 22368139; 420122012; 181274024; 7889708; 88641179; 214418540; 88227948; 4026732; 44755740; 135589796; 54781008; 2546380; 28059919; 178991954; 71248264; 3361444; 37061932; 49311590; 20041960; 926132; 10326055; 288289070; 124667772; 5413972; 60974943; 250164626; 102008220; 4698020; 53035299; 164113904; 69264496; 3082044; 34102688; 76328084; 32400064; 1433484; 15774803; 148727636; 61296044; 2793100; 31604293; 178651154; 73521496; 3355044; 37122817; 76409450; 31745236; 1435012; 15807775; 65383917; 306909956; 129751584; 5763660; 320754530; 127705884; 6023652; 66780674; 114949244; 45942472; 2158764; 23899510; 640283072; 274699968; 12024188; 133965404; 236986316; 96737920; 4450540; 49325010; 151543496; 59559064; 2845980; 31701816; 472994576; 197527140; 8882620; 98508411; 240364070; 98957196; 4513972; 50074863; 241906616; 99758116; 4542940; 50336467; 115262354; 46580920; 2164644; 24071861; 154488860; 64875220; 2901292; 31959807; 302788406; 126543400; 5686260; 61942951; 242979284; 97557980; 4563084; 51060224; 254456150; 112993188; 4778612; 52851357; 102516008; 42027620; 1925276; 21275656; 241758794; 97652648; 4540164; 50291034; 230230808; 94943276; 4323676; 48075273; 139177994; 58660712; 2613764; 29313461; 203645852; 84439928; 3824428; 42444955; 363840596; 149771796; 6832780; 76114777; 198227984; 82403332; 3722684; 41206227; 253712780; 102063584; 4764652; 52866161; 192739826; 77417928; 3619620; 39966751; 122471978; 48858448; 2300036; 25339769; 349535090; 149591988; 6564132; 72552035; 184372334; 77236884; 3462484; 38111299; 331915730; 144842208; 6233252; 68979484; 201869432; 83369752; 3791068; 41988432; 150124064; 60340944; 2819324; 31207770; 145501964; 58554188; 2732524; 30287636; 158807648; 64656896; 2982396; 33016446; 30178652; 12987040; 566828; 6235806
Version 2.0
Discipline Computer Science; Geosciences; Engineering Sciences; Construction Engineering and Architecture; Earth and Environmental Science; Engineering; Environmental Research; Natural Sciences