We introduce a new dataset for goat detection that contains 6160 annotated images captured under varying environmental conditions. The dataset is intended for developing machine learning algorithms for goat detection, with applications in precision agriculture, animal welfare, behaviour analysis, and animal husbandry. The annotations were performed by expert in this filed, ensuring high accuracy and consistency. The dataset is publicly available and can be used as a benchmark for evaluating existing algorithms. This dataset advances research in computer vision for agriculture.