XRF-scanned elemental concentrations from sediment cores off Peru

DOI

We present a high-resolution marine record of sediment input from the Guayas River, Ecuador, that reflects changes in precipitation along western equatorial South America during the last 18ka. We use log (Ti/Ca) derived from X-ray Fluorescence (XRF) to document terrigenous input from riverine runoff that integrates rainfall from the Guayas River catchment. We find that rainfall-induced riverine runoff has increased during the Holocene and decreased during the last deglaciation. Superimposed on those long-term trends, we find that rainfall was probably slightly increased during the Younger Dryas, while the Heinrich event 1 was marked by an extreme load of terrigenous input, probably reflecting one of the wettest period over the time interval studied. When we compare our results to other Deglacial to Holocene rainfall records located across the tropical South American continent, different modes of variability become apparent. The records of rainfall variability imply that changes in the hydrological cycle at orbital and sub-orbital timescales were different from western to eastern South America. Orbital forcing caused an antiphase behavior in rainfall trends between eastern and western equatorial South America. In contrast, millennial-scale rainfall changes, remotely connected to the North Atlantic climate variability, led to homogenously wetter conditions over eastern and western equatorial South America during North Atlantic cold spells. These results may provide helpful diagnostics for testing the regional rainfall sensitivity in climate models and help to refine rainfall projections in South America for the next century.

Supplement to: Mollier-Vogel, Elfi; Leduc, Guillaume; Böschen, Tebke; Martinez, Philippe; Schneider, Ralph R (2013): Rainfall response to orbital and millennial forcing in northern Peru over the last 18 ka. Quaternary Science Reviews, 76, 29-38

Identifier
DOI https://doi.org/10.1594/PANGAEA.824573
Related Identifier IsSupplementTo https://doi.org/10.1016/j.quascirev.2013.06.021
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.824573
Provenance
Creator Mollier-Vogel, Elfi; Leduc, Guillaume; Böschen, Tebke; Martinez, Philippe ORCID logo; Schneider, Ralph R ORCID logo
Publisher PANGAEA
Publication Year 2013
Funding Reference German Research Foundation https://doi.org/10.13039/501100001659 Crossref Funder ID 27542298 https://gepris.dfg.de/gepris/projekt/27542298 Climate - Biogeochemistry Interactions in the Tropical Ocean
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Publication Series of Datasets; Collection
Format application/zip
Size 2 datasets
Discipline Biogeochemistry; Biospheric Sciences; Geosciences; Natural Sciences
Spatial Coverage (-81.320W, -3.950S, -81.125E, -3.750N)
Temporal Coverage Begin 2008-12-11T21:15:00Z
Temporal Coverage End 2008-12-12T13:08:00Z