Local Adaptive Multiplicative Error Models for High-Frequency Forecasts (replication data)

DOI

We propose a local adaptive multiplicative error model (MEM) accommodating time-varying parameters. MEM parameters are adaptively estimated based on a sequential testing procedure. A data-driven optimal length of local windows is selected, yielding adaptive forecasts at each point in time. Analysing 1-minute cumulative trading volumes of five large NASDAQ stocks in 2008, we show that local windows of approximately 3 to 4 hours are reasonable to capture parameter variations while balancing modelling bias and estimation (in)efficiency. In forecasting, the proposed adaptive approach significantly outperforms a MEM where local estimation windows are fixed on an ad hoc basis.

Identifier
DOI https://doi.org/10.15456/jae.2022321.0721115370
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:775599
Provenance
Creator Härdle, Wolfgang Karl; Hautsch, Nikolaus; Mihoci, Andrija
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2015
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics