Data publication: Enantioselective Synthesis, Structure Activity Relationship, Radiofluorination and Biological Evaluation of [18F]RM365, a Novel Radioligand for Imaging the Human Cannabinoid Receptor Type 2 (CB2R) in the Brain with PET

DOI

The development of cannabinoid receptor type 2 (CB2R) PET radioligands has been intensively explored due to the pronounced CB2R upregulation in various pathological conditions, such as neuroinflammation and cancer. Herein we report on the enantioselective synthesis of a series of highly affine fluorinated indole-2-carboxamide ligands targeting the CB2R in the brain. Compound RM365 was selected for PET radiotracer development due to its high CB2R affinity (Ki = 2.1 nM) and pronounced selectivity over CB1R (factor > 300). A fully automated copper-mediated radiofluorination of [18F]RM365 was established starting from the corresponding aryl boronic acid pinacol ester precursor. Preliminary in vitro evaluation of [18F]RM365 indicated species differences in the binding to CB2R (KD of 2.32 nM for the human CB2R vs. KD > 10000 nM for the rat CB2R). Metabolism studies in mice revealed high stability of [18F]RM365 with fractions of parent compound of > 90% in the brain and > 54% in the plasma at 30 min p.i. PET imaging in a rat model of local hCB2R(D80N) overexpression in the brain demonstrate the ability of [18F]RM365 to reach and selectively label the intracranial expressed hCB2R(D80N) with high signal-to-background ratio. Thus, [18F]RM365 is a very promising PET radioligand for the imaging of upregulated hCB2R expression under pathological conditions with high potential towards clinical application in humans.

Identifier
DOI https://doi.org/10.14278/rodare.2252
Related Identifier https://www.hzdr.de/publications/Publ-36778
Related Identifier https://www.hzdr.de/publications/Publ-35005
Related Identifier https://doi.org/10.14278/rodare.2251
Related Identifier https://rodare.hzdr.de/communities/rodare
Metadata Access https://rodare.hzdr.de/oai2d?verb=GetRecord&metadataPrefix=oai_datacite&identifier=oai:rodare.hzdr.de:2252
Provenance
Creator Teodoro, Rodrigo ORCID logo; Gündel, Daniel ORCID logo; Deuther-Conrad, Winnie ORCID logo; Toussaint, Magali ORCID logo; Wenzel, Barbara ORCID logo; Bormans, Guy; Kopka, Klaus ORCID logo; Brust, Peter ORCID logo; Moldovan, Rares-Petru ORCID logo
Publisher Rodare
Publication Year 2023
Rights Creative Commons Attribution 4.0 International; Open Access; https://creativecommons.org/licenses/by/4.0/legalcode; info:eu-repo/semantics/openAccess
OpenAccess true
Contact https://rodare.hzdr.de/support
Representation
Resource Type Dataset
Discipline Life Sciences; Natural Sciences; Engineering Sciences