Atmospheric evolution of molecular weight separated brown carbon from biomass burning

DOI

Biomass burning is a major source of atmospheric brown carbon (BrC) and through its absorption of UV/VIS radiation, it can play an important role on the planetary radiative balance and atmospheric photochemistry. The considerable uncertainty of BrC impacts is associated with its poorly constrained sources, transformations and atmospheric lifetime. Here we report laboratory experiments that examined changes in the optical properties of the water-soluble BrC fraction of laboratory generated biomass burning particles from hardwood pyrolysis. Effects of direct UVB photolysis and OH oxidation in the aqueous phase on molecular weight-separated BrC were studied. Results indicated that the majority of low molecular weight (MW) BrC ( 10 hours) biomass burning emissions, poor linear correlations were found between light absorptivity and levoglucosan, consistent with other studies suggesting a short atmospheric lifetime for levoglucosan. However, a much stronger correlation between light absorptivity and total hydrous sugars was observed, suggesting that they may serve as more robust tracers for aged biomass burning emissions. Overall, the results from this study suggest that robust model estimates of BrC radiative impacts require consideration of the atmospheric aging of BrC and the stability of high-MW BrC.

Supplement to: Wong, Jenny Pui Shan; Tsagkaraki, Maria; Tsiodra, Irini; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Kanakidou, Maria; Sciare, Jean; Nenes, Athanasios; Weber, Rodney J (2019): Atmospheric evolution of molecular-weight-separated brown carbon from biomass burning. Atmospheric Chemistry and Physics, 19(11), 7319-7334

Identifier
DOI https://doi.org/10.1594/PANGAEA.896731
Related Identifier IsSupplementTo https://doi.org/10.5194/acp-19-7319-2019
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.896731
Provenance
Creator Wong, Jenny Pui Shan ORCID logo; Tsagaraki, Maria; Tsiodra, Irini; Mihalopoulos, Nikolaos ORCID logo; Violaki, Kalliopi ORCID logo; Kanakidou, Maria ORCID logo; Sciare, Jean ORCID logo; Nenes, Athanasios ORCID logo; Weber, Rodney J
Publisher PANGAEA
Publication Year 2018
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 28 data points
Discipline Earth System Research