High-resolution sea surface temperatures (SST) derived from Mg/Ca ratios of Globeriginoides sacculifer at ODP Site 1144 were reported to reveal the SST changes during the last 260 ka in the northern South China Sea (SCS). The results indicate an average Holocene SST of about 26.7 °C, about 3.6 °C increase from LGM to the Holocene, and higher temperature during MIS 5.5 than the Holocene. These agree well with other foraminifer Mg/Ca and Uk 37 SST records in this region. The Mg/Ca records suggest warmer SSTs during MIS 3 in the northern SCS, compared with those in the eastern Pacific. Strong East Asian summer monsoon during MIS 3 indicated by paleoclimate records from nearby continents may account for it. Step-wise increases during terminations are shown in our SST record, and the beginning of deglacial warming occurs at about 19 ka, which precedes the change of oxygen isotopes, suggesting a tropical driven forcing for the SST change in the northern SCS. This is further supported by a robust semiprecessional cycle centering at ~9.1 ka in the spectra of the SST record, which is absent in that of the oxygen isotopes. However, tropical driven forcing seems not to be indicated in another Mg/Ca SST record in the northern SCS [Oppo, D.W. and Sun, Y.B., 2005. Amplitude and timing of sea-surface temperature change in the northern South China Sea: Dynamic link to the East Asian monsoon. Geology, 33 (10): 785–788, doi:10.1130/G21867.1]. The discrepancy may be caused by different post-deposition dissolutions of foraminifer tests at these two sites. Details about the modification of foraminifer Mg/Ca ratios after burial, however, are not well known in this region, and further studies are needed.
Ages follows Age model of Buehring et al. (2004) doi:10.2973/odp.proc.sr.184.205.2004
Supplement to: Wei, Gangjian; Deng, Wenfeng; Liu, Ying; Li, Xianhua (2007): High-resolution sea surface temperature records derived from foraminiferal Mg/Ca ratios during the last 260 ka in the northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 250(1-4), 126-138