We investigate the superconducting properties of molybdenum disulphide (MoS₂) monolayer across a broad doping range, successfully recreating the so far unresolved superconducting dome. Our first-principles findings reveal several dynamically stable phases across the doping-dependent phase diagram. We observe a doping-induced increase in the superconducting transition temperature Tc, followed by a reduction in Tc due to the formation of charge density waves (CDWs), polaronic distortions, and structural transition from the H to the 1T′ phase. Our work reconciles various experimental observations of CDWs in MoS₂ with its doping-dependent superconducting dome structure, which occurs due to the 1×1 H to 2×2 CDW phase transition.