Replication Data for: A reinforcement learning framework for improving parking decisions in last-mile delivery

DOI

Replication package for “A reinforcement learning framework for improving parking decisions in last-mile delivery”. Abstract: "This study leverages simulation-optimisation with a Reinforcement Learning (RL) model to analyse the routing behaviour of delivery vehicles (DVs). We conceptualise the system as a stochastic k-armed bandit problem, representing a sequential interaction between a learner (the DV) and its surrounding environment. Each DV is assigned a random number of customers and an initial delivery route. If a loading zone is unavailable, the RL model is used to select a delivery strategy, thereby modifying its route accordingly. The penalty is gauged by the additional trucking and walking time incurred compared to the originally planned route. Our methodology is tested on a simulated network featuring realistic traffic conditions and a fleet of DVs employing four distinct lastmile delivery strategies. The results of our numerical experiments underscore the advantages of providing DVs with an RL-based decision support system for en-route decision-making, yielding benefits to the overall efficiency of the transport network."

Identifier
DOI https://doi.org/10.34894/XPYG7A
Related Identifier IsCitedBy https://doi.org/10.1080/21680566.2024.2337216
Metadata Access https://dataverse.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.34894/XPYG7A
Provenance
Creator Muriel, Juan E.; Zhang, Lele ORCID logo; Fransoo, Jan C. ORCID logo; Villegas, Juan G. (ORCID: 0000-0002-2940-571X)
Publisher DataverseNL
Contributor Fransoo, Jan C.; Tilburg University; DataverseNL
Publication Year 2024
Rights CC0 1.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/publicdomain/zero/1.0
OpenAccess true
Contact Fransoo, Jan C. (Tilburg University)
Representation
Resource Type Miscellaneous data; Dataset
Format text/plain; charset=US-ASCII; application/java-vm; text/x-java-source; text/csv; application/octet-stream; text/xml; application/java-archive; application/pdf
Size 1140; 8327; 7338; 87; 1004; 756; 34316; 81610; 1758; 1246; 55856; 74845; 20922; 34069; 1384; 2314; 2086; 1117; 829; 1322; 1946; 2204; 4644; 7084; 3897; 5834; 6347; 10179; 244; 246; 3395; 3411; 3557; 3677; 271; 5882; 12135; 17556; 68361; 92061; 2438; 1581; 3723; 3336; 3603; 7478; 8878; 4249; 15563; 49926; 16428; 60970; 2102; 1380; 1190; 856; 816; 537; 50; 3490; 2192; 835; 892; 865; 1040; 869; 8187; 11799; 915; 972; 945; 1120; 949; 8747; 17736; 28783; 1168; 962; 6410; 8140; 3401; 2108; 65508; 226; 1116858; 234; 152480; 220; 208; 91; 6685; 22929; 1259; 703; 1303; 804; 1286; 742; 1349; 708; 2610; 1802; 838; 577; 1764; 2959; 2625; 233174; 4833; 5002; 5509; 6161; 7171; 8854; 6311; 7866; 5245; 6850; 6459; 7586; 6730; 8615; 4905; 6713; 279; 1710; 777; 117; 4176; 6964; 8713; 17800; 882; 1845; 613; 1999; 8013; 15755; 9143; 21339; 5019; 7858; 266; 1608; 2000; 1217; 884; 1530; 1428; 1048; 767; 29382; 47723; 28285; 8330; 8114; 1256; 709; 651; 610; 713; 1865; 801; 1283; 9763; 15357; 20022; 32257; 8729; 8260; 493; 1679; 7491; 10771; 12576; 18708; 20349; 40983; 25235; 45794; 17628; 25416; 25782; 70341; 12153; 13608; 2255; 1497; 6358; 4578; 1944; 1867; 7257; 6678; 1645; 658; 1724; 1118; 466; 8915; 14625; 5041; 4667; 7529; 476; 1614; 1729; 1198; 1587; 11873; 2290; 7466; 11322; 25389; 285; 283; 284; 247; 877; 0
Version 1.0
Discipline Agriculture, Forestry, Horticulture, Aquaculture; Agriculture, Forestry, Horticulture, Aquaculture and Veterinary Medicine; Business and Management; Economics; Life Sciences; Social Sciences; Social and Behavioural Sciences; Soil Sciences