aIschemia–reperfusion injury (IRI) is a key contributor to graft dysfunction in kidney transplantation. Cell-free mitochondrial DNA (mtDNA) is increasingly recognized as a damage-associated molecular pattern (DAMP) and biomarker in IRI, but its prognostic role in living donor kidney transplantation (LDKT) remains unclear. Methods: This post hoc analysis of the VAPOR-1 study evaluated urinary mtDNA (UmtDNA) in 57 LDKT recipients. MtDNA levels (ND1, ND6, and D-loop) were measured at five early timepoints post-transplantation using qPCR. Associations between early UmtDNA and long-term graft function, defined by estimated glomerular filtration rate (eGFR) at 1, 12, and 24 months, were analyzed. Results: Higher UmtDNA levels in the first urine after reperfusion were significantly associated with improved eGFR at 12 months and a positive change in eGFR between month 1 and 24. These associations were not attributable to urine creatinine levels or mitochondrial copy number. Conclusions: In this LDKT cohort, elevated early UmtDNA may reflect a well-functioning graft capable of clearing systemic mtDNA rather than ongoing tubular injury. These findings suggest that the biological interpretation of mtDNA as a biomarker is context-dependent and call for careful reconsideration of its role in early transplant monitoring.