Economic results of pig-fattening systems vary greatly and depend in part on prices of pork and feeds, as well as pig growth performance (e.g. slaughter weight, lean percentage). Previous studies revealed that feeding and shipping strategies are critical factors in the economic outputs of pig production. However, they failed to consider both strategies and the variability in pig growth performance simultaneously. Consequently, we developed a new approach to improve the profitability of pig farms by estimating the best compromise among feeding costs, animal performance, and shipping constraints. We used an individual-based bioeconomic model that simulates the growth of each pig according to its biological traits (e.g. feed intake and protein deposition potential) as a function of different feeding and shipping strategies. The optimization problem is solved using an evolutionary algorithm (CMA-ES, covariance matrix adaptation evolution strategy) that manages the objective function, which is discontinuous, non-convex, nonlinear, and multimodal. Various case studies were constructed to investigate the behavior of the optimization procedure.
This dataset provides code and data used in the article submitted to Agricultural Systems journal on March 31st, 2020