This data publication provides access to three-component (3C) passive seismic data collected in the National Park La Campana, Chile. The data acquisition was conducted as part of the EarthShape project, specifically the Geophysical Imaging of the Deep Earth (GIDES) initiative. The seismic array was strategically positioned to intersect an existing borehole location. This borehole boasts a wealth of data, including core samples and geophysical logging information. The passive seismic data plays a crucial role in imaging the structure of the deep weathering zone beneath the surface. The dataset includes the raw data captured by the CUBE data logger. This raw data can be converted into the widely used miniSEED format using the freely available GIPP (Geophysical Instruments Pool Potsdam) tools. This conversion facilitates seamless integration with other seismic analysis software, promoting broader utilization of the data by the scientific community.
The Geophysical Instrument Pool Potsdam (GIPP) provides field instruments for (temporary) seismological studies (both controlled source and earthquake seismology) and for magnetotelluric (electromagnetic) experiments. The GIPP is operated by the GFZ German Research Centre for Geosciences. The instrument facility is open for academic use. Instrument applications are evaluated and ranked by an external steering board. See Haberland and Ritter (2016) and https://www.gfz.de/gipp for more information.
The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022; https://www.earthshape.net/) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions.