Selectional Preference Embeddings (EMNLP 2017)

DOI

Joint embeddings of selectional preferences, words, and fine-grained entity types.

The vocabulary consists of:

verbs and their dependency relation separated by "@", e.g. "sink@nsubj" or "elect@dobj" words and short noun phrases, e.g. "Titanic" fine-grained entity types using the FIGER inventory, e.g.: /product/ship or /person/politician

The files are in word2vec binary format, which can be loaded in Python with gensim like this:

from gensim.models import KeyedVectors

emb_file = "/path/to/embedding_file" emb = KeyedVectors.load_word2vec_format(emb_file, binary=True)

Identifier
DOI https://doi.org/10.11588/data/FJQ4XL
Related Identifier http://aclweb.org/anthology/D17-1138
Metadata Access https://heidata.uni-heidelberg.de/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.11588/data/FJQ4XL
Provenance
Creator Heinzerling, Benjamin
Publisher heiDATA
Contributor Heinzerling, Benjamin
Publication Year 2019
Rights info:eu-repo/semantics/openAccess
OpenAccess true
Contact Heinzerling, Benjamin (Heidelberg University and Natural Language Processing (NLP) Group at the Heidelberg Institute for Theoretical Studies (HITS))
Representation
Resource Type Dataset
Format application/octet-stream; text/plain
Size 234273085; 539336920; 319312690; 733911856; 322661973; 741512969; 263116884; 605657791; 370493745; 851064869; 374095258; 859235881
Version 1.0
Discipline Other