(Table S2) Relative abundance of archaeal 16S rRNA genes in sediment cores

DOI

Deep drilling into the marine sea floor has uncovered a vast sedimentary ecosystem of microbial cells (Parkes et al., 1994, doi:10.1038/371410a0; D'Hondt et al., 2004, doi:10.1126/science.1101155). Extrapolation of direct counts of stained microbial cells to the total volume of habitable marine subsurface sediments suggests that between 56 Pg (Parkes et al., 1994, doi:10.1038/371410a0) and 303 Pg (Whitman et al., 1998) of cellular carbon could be stored in this largely unexplored habitat. From recent studies using various culture-independent techniques, no clear picture has yet emerged as to whether Archaea or Bacteria are more abundant in this extensive ecosystem (Schippers et al., doi:10.1038/nature03302; Inagaki et al., doi:10.1073/pnas.0511033103 ; Mauclaire et al., doi:10.1111/j.1472-4677.2004.00035.x; Biddle et al., doi:10.1073/pnas.0600035103). Here we show that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells (Biddle et al., doi:10.1073/pnas.0600035103; Sturt et al., 2004, doi:10.1002/rcm.1378), are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass. Results obtained from modified quantitative polymerase chain reaction and slot-blot hybridization protocols support the lipid-based evidence and indicate that these techniques have previously underestimated archaeal biomass. The lipid concentrations are proportional to those of total organic carbon. On the basis of this relationship, we derived an independent estimate of amounts of cellular carbon in the global marine subsurface biosphere. Our estimate of 90 Pg of cellular carbon is consistent, within an order of magnitude, with previous estimates, and underscores the importance of marine subsurface habitats for global biomass budgets.

Sediment depth is given in mbsf. Archaeal 16S rRNA gene copy number ratio = archaeal 16S rRNA genes / (archaeal + bacterial 16S rRNA genes). < = the value indicates the minimum archaeal 16S rRNA ratio based on the detection limit of bacterial 16S rRNA gene copy number when no bacterial signals were detected. 0 = not detected.

Supplement to: Lipp, Julius S; Morono, Yuki; Inagaki, Fumio; Hinrichs, Kai-Uwe (2008): Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454(t207), 991-994

Identifier
DOI https://doi.org/10.1594/PANGAEA.769715
Related Identifier https://doi.org/10.1038/nature07174
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.769715
Provenance
Creator Lipp, Julius S ORCID logo; Morono, Yuki ORCID logo; Inagaki, Fumio ORCID logo; Hinrichs, Kai-Uwe ORCID logo
Publisher PANGAEA
Publication Year 2008
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 133 data points
Discipline Earth System Research
Spatial Coverage (-79.956W, -9.113S, 142.202E, 47.755N); South Pacific Ocean; Juan de Fuca Ridge, North Pacific Ocean
Temporal Coverage Begin 2002-02-19T19:55:00Z
Temporal Coverage End 2002-03-16T22:35:00Z