Detecting multiple breaks in financial market volatility dynamics (replication data)

DOI

The paper evaluates the performance of several recently proposed tests for structural breaks in the conditional variance dynamics of asset returns. The tests apply to the class of ARCH and SV type processes as well as data-driven volatility estimators using high-frequency data. In addition to testing for the presence of breaks, the statistics identify the number and location of multiple breaks. We study the size and power of the new tests for detecting breaks in the conditional variance under various realistic univariate heteroscedastic models, change-point hypotheses and sampling schemes. The paper concludes with an empirical analysis using data from the stock and FX markets for which we find multiple breaks associated with the Asian and Russian financial crises. These events resulted in changes in the dynamics of volatility of asset returns in the samples prior and post the breaks.

Identifier
DOI https://doi.org/10.15456/jae.2022314.1310897750
Metadata Access https://www.da-ra.de/oaip/oai?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:oai.da-ra.de:776244
Provenance
Creator Andreou, Elena; Ghysels, Eric
Publisher ZBW - Leibniz Informationszentrum Wirtschaft
Publication Year 2002
Rights Creative Commons Attribution 4.0 (CC-BY); Download
OpenAccess true
Contact ZBW - Leibniz Informationszentrum Wirtschaft
Representation
Language English
Resource Type Collection
Discipline Economics