Population 24/7 Near Real Time: Data Library, Sample Outputs and Batch Files for England, 2011

DOI

This data collection comprises a data library, sample outputs, batch files and accompanying documentation from the ESRC-funded project “Population247NRT: Near real-time spatiotemporal population estimates for health, emergency response and national security”. The data comprise a structured set of input data for use with the authors’ SurfaceBuilder247 software and sample outputs which estimate the population distribution of England at specific times on specific dates, referenced to 2011 census population totals. The sample output files (provided as GeoTIFFs) contain population estimates in 200m grid cells, based on the British National Grid, for 02:00 (2am) and 14:00 (2pm) on a typical weekday in University and school term-time and out of term-time. The estimates are broken down by seven age/economic activity sub-groups for term-time and six for out of term-time, and include estimates of population activity in residential, workplace, education, healthcare and road transportation domains. The data library, which has been constructed entirely using open data sources, comprises population estimates, by age/economic activity sub-groups, for point locations (typically population-weighted centroids of census output areas and workplace zones, or postcode centroids of sites such as schools or hospitals); time profiles representing usual patterns of population activity at these sites during a 24-hour period; and background grid layers representing the land surface area and major road network. SurfaceBuilder247 uses the data library to generate time-specific gridded population estimates by redistributing the population of each sub-group across the available locations and background grid in accordance with the reference time profiles. The sample output grids provided in this resource may be used directly in GIS software or, alternatively, the input data library may be reprocessed using SurfaceBuilder247 to generate estimates for specific dates and times of interest to the user. Sample batch and session parameter files are included in the resource.Decision-making and policy formulation in sectors such as health, emergency/crisis response and national security, ideally require accurate dynamic information on the number of people in specific places at specific times of the day, week, season or year. Traditional census data do not provide this level of detail but are often used for such policy and planning purposes. The ESRC-funded Population247 programme of research (Martin et al, 2015) developed a framework, methodology and software tool (SurfaceBuilder247) for integrating diverse contemporary data sources to produce enhanced time-specific population estimates for small geographical areas. Its usefulness has since been demonstrated for flooding and radiation emergency response/planning, through collaborations with HR Wallingford and Public Health England. These models have primarily involved the integration of open administrative data for activities such as place of residence, work, education and health. Now, new and emerging forms of data, such as sensor data, live and static data feeds provided via the internet, and various commercial datasets which were not previously available, provide exciting opportunities to enhance these population estimates. Such new and emerging datasets are useful because they provide near real-time information on population activity in sectors which are particularly dynamic and have previously been difficult to model, such as retail, leisure and transport. However, extracting useful intelligence from these sources, and integrating and calibrating them with existing data sources, poses significant challenges for researchers and practitioners seeking to employ them in the creation of time-specific population estimates. This project will combine new, emerging and existing datasets in order to produce enhanced time-specific population estimates for more informed decision-making and policy formulation in the health, emergency/crisis response and national security sectors. It is a collaborative project between University of Southampton, Public Health England (PHE), Health and Safety Executive (HSE) and Defence Science and Technology Laboratory (Dstl). The project will enhance existing methods and tools for harvesting, processing, integrating and calibrating new, emerging and existing data sources in order to produce time-specific population estimates. It will deliver two substantive policy demonstrator case studies with the project partners. The first case study will demonstrate the potential for using time-specific population estimates for near real-time response in emergencies; the second will explore their usefulness for modelling variation in 'normal' population distributions through space and time in order to inform longer-term planning and policy formulation. Importantly, the project will also encourage the sharing of knowledge and expertise between academia and the public sector through joint design and implementation of the case studies, internal seminars and a jointly organised stakeholder workshop. Invitees to the workshop will be key stakeholders in policy and practice from within and beyond the partners' sectors. The workshop will showcase the data, methods and tools developed by the project, discuss the opportunities and challenges involved in implementing these for decision-making and policy formulation, and identify how such methods might realistically be scaled up within these sectors. Ultimately, the aim of the project is to help partners such as PHE, HSE and Dstl carry out their remits more effectively and efficiently through the provision of better time-specific population estimates.

The data library and sample output files provided in this data collection have been generated by processing a range of open data sources including residential and workplace populations from the 2011 Census, school and college pupil numbers from the school census and services such as the government’s ‘Get Information About Schools’, university student numbers from the Higher Education Statistics Agency, hospital patient numbers and attendance time profiles from NHS Digital, road traffic estimates from the Department for Transport National Transportation Model, and GIS road network, inland water and coastline layers from Ordnance Survey and the Office for National Statistics. Information from the 2015 Time Use Survey has been used in the estimation of typical time profiles for workplace activities. GIS processing has been undertaken to estimate typical catchment area sizes for locations such as schools and hospitals. The principal input data are population counts for 2011 census output areas in England, which determine the base populations of all the estimates produced. The project team have georeferenced, reformatted and integrated all the input sources to create an input data library for the SurfaceBuilder247 software. All the necessary input files are provided, together with sample outputs for selected times of interest.

Identifier
DOI https://doi.org/10.5255/UKDA-SN-853950
Metadata Access https://datacatalogue.cessda.eu/oai-pmh/v0/oai?verb=GetRecord&metadataPrefix=oai_ddi25&identifier=b1c331bd2363967e7d2bf732eb3cac37f01514bd8f0fa7ed0a6a2559b934c70e
Provenance
Creator Cockings, S, University of Southampton; Martin, D, University of Southampton; Harfoot, A, University of Southampton; Branson, J, University of Southampton; Campbell-Sutton, A, University of Southampton; Gubbins, G, University of Southampton
Publisher UK Data Service
Publication Year 2021
Funding Reference Economic and Social Research Council
Rights Samantha Cockings, University of Southampton. David Martin, University of Southampton. Thomas Charnock, Public Health England. William Holmes, Health and Safety Executive. Glen Hart, Defence Science and Technology Laboratory. Nicholas Gibbins, University of Southampton; The Data Collection is available to any user without the requirement for registration for download/access. Contains data from the Office for National Statistics, Royal Mail and NHS Digital licensed under the Open Government Licence v.3.0. Contains Higher Education Statistics Agency (HESA) data published under the Creative Commons Attribution 4.0 International licence. Original data remain under Crown copyright, Royal Mail, NHS Digital and HESA copyright. Detailed information about sources and copyright is available under https://reshare.ukdataservice.ac.uk/853950/4/Documents.zip
OpenAccess true
Representation
Resource Type Numeric; Geospatial
Discipline Social Sciences
Spatial Coverage England