Chemical composition of carbonate hardground cements

DOI

Trace metal and isotopic ratios, including some rare earth elements, Mg/Ca, manganese and strontium concentrations, δ¹⁸O, δ¹³C, and ⁸⁷Sr/⁸⁶Sr, were analyzed in the carbonate cements from 17 Phanerozoic carbonate hardgrounds. The sensitivity of the geochemical signal to alteration depends on the geochemical analysis in question and the environmental water-rock ratio. Of these samples, only our modern sample has measurements consistent with primary precipitation from seawater; all other samples precipitated from chemically evolved seawater or were influenced by meteoric water, even if only minimally changed. The more recent samples from the Cenozoic had seawater ⁸⁷Sr/⁸⁶Sr. The Mesozoic samples, in contrast, did not preserve seawater ⁸⁷Sr/⁸⁶Sr, even though the Mg/Ca, δ¹⁸O, and δ¹³C values were consistent with precipitation from seawater. Finally, the Paleozoic samples preserved expected seawater ⁸⁷Sr/⁸⁶Sr, though REE and δ¹⁸O suggest primary precipitation was from evolved seawater. Additionally, we place our results in the context of open vs. closed system precipitation using transects of the Mg/Ca ratios across individual cements. Overall, we stress that one geochemical measurement provides only a partial record of fluid composition, but multiple measurements allow a potential understanding of the seawater geochemical signal.

Identifier
DOI https://doi.org/10.1594/PANGAEA.910001
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.910001
Provenance
Creator Erhardt, Andrea M (ORCID: 0000-0002-5213-986X); Turchyn, Alexandra V ORCID logo; Dickson, J A D; Sadekov, Aleksey Y; Taylor, Paul D (ORCID: 0000-0002-3127-080X); Wilson, Mark A; Schrag, Daniel P
Publisher PANGAEA
Publication Year 2019
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Publication Series of Datasets; Collection
Format application/zip
Size 7 datasets
Discipline Earth System Research
Spatial Coverage (-117.000W, 11.500S, 162.333E, 54.567N)