Phytoplankton are usually considered autotrophs, but an increasing number of studies show that many taxa are able also to use organic carbon. Acquiring nutrients and energy from different sources might enable an efficient uptake of required substances and provide a strategy to deal with varying resource availability, especially in highly dynamic ecosystems such as estuaries. In our study, we investigated the effects of 31 organic carbon sources on the growth (proxied by differences in cell counts after 24 h exposure) of 17 phytoplankton strains from the Elbe estuary spanning four functional groups. All of our strains were able to make use of at least 1 and up to 26 organic compounds for growth. Pico-sized green algae such as Mychonastes, as well as the nano-sized green alga Monoraphidium in particular were positively affected by a high variety of substances. Reduced light availability, typically appearing in turbid estuaries and similar habitats, resulted in an overall poorer ability to use organic substances for growth, indicating that organic carbon acquisition was not primarily a strategy to deal with darkness. Our results give further evidence for mixotrophy being a ubiquitous ability of phytoplankton and highlight the importance to consider this trophic strategy in research.
This project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the project 'Biota-mediated effects on carbon cycling in estuaries' (grant no. 407270017/RTG2530).