Stable carbon isotope record of sediment core Ancora

DOI

The standard paradigm that the Paleocene/Eocene thermal maximum (PETM) represents a threshold event intrinsic to Earth's climate and connected in some way with long-term warming has influenced interpretations of the geochemical, climate, and biological perturbations that occurred at this event. As recent high-resolution data have demonstrated that the onset of the event was geologically instantaneous, attempts to account for the event solely through endogenous mechanisms have become increasingly strained. The rapid onset of the event indicates that it was triggered by a catastrophic event which we suggest was most likely a bolide impact. We discuss features of the PETM that require explanation and argue that mechanisms that have previously been proposed either cannot explain all of these features or would require some sort of high-energy trigger. A bolide impact could provide such a trigger and, in the event of a comet impact, could contribute directly to the shape of the carbon isotope curve. We introduce a carbon cycle model that would explain the PETM by global warming following a bolide impact, leading to the oxidation of terrestrial organic carbon stores built up during the late Paleocene. Our intention is to encourage other researchers to seriously consider an impact trigger for the PETM, especially in the absence of plausible alternative mechanisms.

Supplement to: Cramer, Benjamin S; Kent, Dennis V (2005): Bolide summer: The Paleocene/Eocene thermal maximum as a response to an extraterrestrial trigger. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(1-3), 144-166

Identifier
DOI https://doi.org/10.1594/PANGAEA.824524
Related Identifier https://doi.org/10.1016/j.palaeo.2005.03.040
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.824524
Provenance
Creator Cramer, Benjamin S; Kent, Dennis V ORCID logo
Publisher PANGAEA
Publication Year 2005
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 35 data points
Discipline Earth System Research
Spatial Coverage (-74.849 LON, 39.692 LAT); New Jersey