Influence of N-introduction on the electronic structure and properties of polyacenes: experiment and quantum chemistry in concert [research data]

DOI

N-Heteropolycycles (NHPCs) represent a promising substance class for applications in functional organic materials, since their electronic structure and the resulting individual molecular properties are efficiently tuneable by number and position of nitrogen atoms in the aromatic structural backbone. The isosteric replacement of a C–H unit by N leaves the geometric structure unchanged, while ionization potential, electron affinity and absorption spectra are altered. In this prespective, we present the potent combination of two-photon photoelectron spectroscopy (2PPE) and high-resolution electron energy loss spectroscopy (HREELS) with quantum chemical calculations for the investigation of the electronic structure of NHCPs. In contrast to conventional optical spectroscopies, 2PPE provides insight into electron-detached and attached electronic states of NHCPs, while HREELS delivers the energetic position of the lowest triplet states. Based on our comprehensive investigations, an extension of Platt’s famous nomenclature of the low-lying excited ππ* states could be suggested for NHPCs based on the physical properties of the corresponding excitons. Also, the influence of N-introduction onto the occurrence of the so-called α-band in NHPCs compared to the parent polycyclic aromatic hydrocarbons could be explained in detail. While N-substitution of C–H in polycyclic aromatic hydrocarbons (PAHs) is often seen as a simple isosteric replacement, it has a strong influence on the electronic structure and the resulting properties. Therefore rules derived for PAHs can often only be transferred to a limited extent or not at all.

Identifier
DOI https://doi.org/10.11588/data/FEQZX9
Related Identifier https://doi.org/10.1039/D3CP01916K
Metadata Access https://heidata.uni-heidelberg.de/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=doi:10.11588/data/FEQZX9
Provenance
Creator Dreuw, Andreas ORCID logo; Tegeder, Petra ORCID logo
Publisher heiDATA
Contributor Tegeder, Petra; heiDATA: Heidelberg Research Data Repository
Publication Year 2024
Funding Reference Deutsche Forschungsgemeinschaft 281029004 (SFB 1249, Projects B01 and B06)
Rights CC BY 4.0; info:eu-repo/semantics/openAccess; http://creativecommons.org/licenses/by/4.0
OpenAccess true
Contact Tegeder, Petra (Heidelberg University, Institute for Physical Chemistry)
Representation
Resource Type Dataset
Format application/zip; text/plain
Size 201726; 1229
Version 1.0
Discipline Chemistry; Natural Sciences