Seawater carbonate chemistry and physiological parameters of Acropora humilis, Acropora millepora, Pocillopora damicornis, Pocillopora verrucosa, Porites cylindrica, and Porites lutea

DOI

Ocean acidification (OA) poses a major threat to calcifying organisms such as reef-building corals, typically leading to reduced calcification rates. Mechanisms to compensate the effects of OA on coral growth may, however, involve processes other than calcification. Yet, the physiological patterns mediating coral growth under OA are not fully understood, despite an extensive body of literature characterizing physiological changes in corals under OA. Therefore, we conducted a three-month laboratory experiment with six scleractinian coral species (Acropora humilis, Acropora millepora, Pocillopora damicornis, Pocillopora verrucosa, Porites cylindrica, and Porites lutea) to assess physiological parameters that potentially characterize growth (calcification, volume, and surface area), maintenance (tissue biomass, and lipid and protein content), and cellular stress (apoptotic activity) response under ambient (pH 7.9) and low pH (pH 7.7). We identified genus- and species-specific physiological parameters potentially mediating the observed growth responses to low pH. We found no significant changes in calcification but species showed decreasing growth in volume and surface area, which occurred alongside changes in maintenance and cellular stress parameters that differed between genera and species. Acropora spp. showed elevated cellular stress and Pocillopora spp. showed changes in maintenance-associated parameters, while both genera largely maintained growth under low pH. Conversely, Porites spp. experienced the largest decreases in volume growth but showed no major changes in parameters related to maintenance or cellular stress. Our findings indicate that growth- and calcification-related responses alone may not fully reflect coral susceptibility to OA. They may also contribute to a better understanding of the complex physiological processes leading to differential growth changes of reef-building corals in response to low pH conditions.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-07-18.

Identifier
DOI https://doi.org/10.1594/PANGAEA.946411
Related Identifier https://doi.org/10.3389/fmars.2022.872631
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Related Identifier https://doi.org/10.6084/m9.figshare.19107380
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.946411
Provenance
Creator Martins, Catarina P P; Arnold, Angelina L; Kömpf, Katharina; Schubert, Patrick; Ziegler, Maren; Wilke, Thomas ORCID logo; Reichert, Jessica
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2022
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 600 data points
Discipline Earth System Research