Ultrafast electron localization in the EuNi2(Si0.21Ge0.79)2 correlated metal

Ultrafast electron delocalization induced by a femtosecond laser pulse is a well-known process in which electrons are ejected from the ions within the laser pulse duration. However, very little is known about the speed of electron localization out of an electron gas in correlated metals, i.e., the capture of an electron by an ion. Here, we demonstrate by means of pump-probe x-ray techniques across the Eu L3 absorption edge that an electron localization process in the EuNi2(Si0.21Ge0.79)2 intermetallic material occurs within a few hundred femtoseconds after the optical excitation. Spectroscopy and diffraction data collected simultaneously at low temperature and for various laser fluences show that the localization dynamics process is much faster than the thermal expansion of the unit cell along the c direction which occurs within picoseconds. Nevertheless, this latter process is still much slower than pure electronic effects, such as screening, and the subpicosecond timescale indicates an optical phonon drive origin. In addition, comparing the laser fluence dependence of the electronic response with that found in other intermediate 4 f valence materials, we suggest that the electron localization process observed in this Eu-based correlated metal is mainly related to changes in the 4 f hybridization. The observed ultrafast electron localization process sparks fundamental questions for our understanding of electron correlations and their coupling to the lattice.

Identifier
Source https://archive.materialscloud.org/record/2021.143
Metadata Access https://archive.materialscloud.org/xml?verb=GetRecord&metadataPrefix=oai_dc&identifier=oai:materialscloud.org:961
Provenance
Creator Mardegan, Jose; Zerdane, Serhane; Mancini, Giulia; Esposito, Vincent; Rouxel, Jeremy; Mankowsky, Roman; Svetina, Cristian; Gurung, Namrata; Parchenko, Sergii; Porer, Michael; Burganov, Bulat; Deng, Yunpei; Beaud, Paul; Ingold, Gerhard; Pedrini, Bill; Arrell, Christopher; Erny, Christian; Dax, Andreas; Lemke, Henrik; Decker, Martin; Ortiz, Nazaret; Milne, Chris; Smolentsev, Grigory; Maurel, Laura; Johnson, Steven; Mitsuda, Akihiro; Wada, Hirofumi; Yokoyama, Yuichi; Wadati, Hiroki; Staub, Urs
Publisher Materials Cloud
Publication Year 2021
Rights info:eu-repo/semantics/openAccess; Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode
OpenAccess true
Contact archive(at)materialscloud.org
Representation
Language English
Resource Type Dataset
Discipline Materials Science and Engineering