The effects of elevated pCO2 and nutrient levels on Dasysiphonia and Porphyra and the effects of competition and elevated pCO2 and nutrients on the growth of Dasysiphonia and Agardhiella

DOI

Coastal ecosystems are prone to multiple anthropogenic and natural stressors including eutrophication, acidification, and invasive species. While the growth of some macroalgae can be promoted by excessive nutrient loading and/or elevated pCO2, responses differ among species and ecosystems. Native to the western Pacific Ocean, the filamentous, turf-forming rhodophyte, Dasysiphonia japonica, appeared in estuaries of the northeastern Atlantic Ocean during the 1980s and the northwestern Atlantic Ocean during the late 2000s. Here, we report on the southernmost expansion of the D. japonica in North America and the effects of elevated nutrients and elevated pCO2 on the growth of D. japonica over an annual cycle in Long Island, New York, USA. Growth limitation of the macroalga varied seasonally. During winter and spring, when water temperatures were < 15 °C, growth was significantly enhanced by elevated pCO2 (p < 0.05). During summer and fall, when the water temperature was 15–24 °C, growth was significantly higher under elevated nutrient treatments (p < 0.05). When temperatures reached 28 °C, the macroalga grew poorly and was unaffected by nutrients or pCO2. The delta 13C content of regional populations of D. japonica was −30 per mil, indicating the macroalga is an obligate CO2-user. This result, coupled with significantly increased growth under elevated pCO2 when temperatures were < 15 °C, indicates this macroalga is carbon-limited during colder months, when in situ pCO2 was significantly lower in Long Island estuaries compared to warmer months when estuaries are enriched in metabolically derived CO2. The delta 15N content of this macroalga (9 per mil) indicated it utilized wastewater-derived N and its N limitation during warmer months coincided with lower concentrations of dissolved inorganic N in the water column. Given the stimulatory effect of nutrients on this macroalga and that eutrophication can promote seasonally elevated pCO2, this study suggests that eutrophic estuaries subject to peak annual temperatures < 28 °C may be particularly vulnerable to future invasions of D. japonica as ocean acidification intensifies. Conversely, nutrient reductions would serve as a management approach that would make coastal regions more resilient to invasions by this macroalga.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-05-18.

Identifier
DOI https://doi.org/10.1594/PANGAEA.931777
Related Identifier https://doi.org/10.1007/s10530-020-02445-9
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.931777
Provenance
Creator Young, Craig S; Gobler, Christopher J ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2021
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 3260 data points
Discipline Earth System Research
Spatial Coverage (-73.050W, 40.730S, -72.250E, 40.850N)