Autoregressive planet search: irregular time series

DOI

Sensitive signal processing methods are needed to detect transiting planets from ground-based photometric surveys. Caceres et al. (2019AJ....158...58C) show that the autoregressive planet search (ARPS) method - a combination of autoregressive integrated moving average (ARIMA) parametric modeling, a new transit comb filter (TCF) periodogram, and machine learning classification - is effective when applied to evenly spaced light curves from space-based missions. We investigate here whether ARIMA and TCF will be effective for ground-based survey light curves that are often sparsely sampled with high noise levels from atmospheric and instrumental conditions. The ARPS procedure is applied to selected light curves with strong planetary signals from the Kepler mission that have been altered to simulate the conditions of ground-based exoplanet surveys. Typical irregular cadence patterns are used from the Hungarian-made Automated Telescope Network-South (HATSouth) survey. We also evaluate recovery of known planets from HATSouth. Simulations test transit signal recovery as a function of cadence pattern and duration, stellar magnitude, planet orbital period, and transit depth. Detection rates improve for shorter periods and deeper transits. The study predicts that the ARPS methodology will detect planets with >~0.1% transit depth and periods ~<40 days in HATSouth stars brighter than ~15 mag. ARPS methodology is therefore promising for planet discovery from ground-based exoplanet surveys with sufficiently dense cadence patterns.

Cone search capability for table J/AJ/158/59/Kepler (Kepler stars with deep transits (table 1) and success rate of detecting Kepler planets using HATSouth cadences (table 4))

Cone search capability for table J/AJ/158/59/HATSouth (HATSouth stars with confirmed planets (table 2) and their corresponding TCF S/N (table 6))

Identifier
DOI http://doi.org/10.26093/cds/vizier.51580059
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/AJ/158/59
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/158/59
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/AJ/158/59
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/AJ/158/59
Provenance
Creator Stuhr A.M.; Feigelson E.D.; Caceres G.A.; Hartman J.D.
Publisher CDS
Publication Year 2019
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Exoplanet Astronomy; Natural Sciences; Observational Astronomy; Physics; Stellar Astronomy