Seaweed - epiphyte - mesograzer communities were tested for their responses to moderate nutrient enrichment and combined elevated seawater temperature and [CO2] in benthic mesocosm experiments in Kiel during summer

DOI

Coastal marine ecosystems have been under high anthropogenic pressure and it can be assumed that prevalent local perturbation interacts with rising global stressors under proceeding climate change. Understanding their effective pathways and cumulative effects is of high relevance not only with regard to future risk assessment, but also for current ecosystem management. In benthic mesocosms, we factorially tested the effects of one global (combined elevated seawater temperature and CO2 concentration) and one local (nutrient enrichment) stressor on a common coastal Baltic seaweed system (Fucus vesiculosus). Both treatments in combination had additive negative impacts on the seaweed-epiphyte-mesograzer system by altering its regulatory mechanisms. That is, warming decreased the biomass of two mesograzer species (weakened top-down control), whereas moderate nutrient enrichment increased epiphyte biomass (intensified bottom-up control), which ultimately resulted in a significant biomass reduction of the foundation seaweed. Our results suggest that climate change impacts might be underestimated if local pressures are disregarded. Furthermore, they give implication for local ecological management as the mitigation of local perturbation may limit climate change impacts on marine ecosystems.

Supplement to: Werner, Franziska Julie; Graiff, Angelika; Matthiessen, Birte (2016): Even moderate nutrient enrichment negatively adds up to global climate change effects on a habitat-forming seaweed system. Limnology and Oceanography, 61(5), 1891-1899

Identifier
DOI https://doi.org/10.1594/PANGAEA.869444
Related Identifier https://doi.org/10.1002/lno.10342
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.869444
Provenance
Creator Werner, Franziska Julie; Graiff, Angelika ORCID logo; Matthiessen, Birte ORCID logo
Publisher PANGAEA
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Publication Series of Datasets; Collection
Format application/zip
Size 3 datasets
Discipline Earth System Research
Spatial Coverage (10.150 LON, 54.330 LAT)
Temporal Coverage Begin 2014-07-01T08:34:00Z
Temporal Coverage End 2014-08-19T00:00:00Z