Seawater carbonate chemistry and calcification of branches and plates of Porites rus

DOI

This study tested the hypothesis that intraspecific morphological plasticity within a scleractinian coral elicits differential responses to elevated PCO2 and temperature. In Mo'orea, French Polynesia, two short-term laboratory experiments (21 and 14 days) were conducted to test the effects of PCO2 (400 vs. 700 μatm), and PCO2 (400 vs 1000 μatm) combined with temperature (27.0 vs. 29.8 °C), on branches and plates of Porites rus. Experiments employed two irradiances (1000 vs 200 μmol photons/m**2/s), which characterized the microenvironments on the shallow fringing reefs where branching and plating morphologies are common, respectively. Calcification of both morphologies was insensitive to PCO2, as well as the combined effects of elevated PCO2 and temperature. Mean calcification rates were faster in high light than in low light for both morphologies, and biomass was greater in plates than branches in all treatments. Together, our results suggest P. rus is robust to increased PCO2 and high temperature within the constraints of the treatments applied. Morphological plasticity in this species does not mediate physiological resistance to low pH and high temperature.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-03-08.

Identifier
DOI https://doi.org/10.1594/PANGAEA.956283
Related Identifier https://doi.org/10.1016/j.jembe.2016.10.002
Related Identifier https://doi.org/10.6073/pasta/2cb2bff87c27b4777606aa83dc4b225a
Related Identifier https://cran.r-project.org/web/packages/seacarb/index.html
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.956283
Provenance
Creator Lenz, E A; Edmunds, Peter J ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2017
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 4500 data points
Discipline Earth System Research
Spatial Coverage (-150.365 LON, 17.816 LAT)