Accurate stellar parameters and precise elemental abundances are vital pieces to correctly characterize discovered planetary systems, better understand planet formation, and trace galactic chemical evolution. We have performed a uniform spectroscopic analysis for 1127 stars, yielding accurate gravity, temperature, and projected rotational velocity in addition to precise abundances for 15 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, and Y). Most of the stars in this sample are Kepler Objects of Interest, observed by the California-Kepler Survey, and include 1003 stars hosting 1562 confirmed planets. This catalog extends the uniform analysis of our previous catalog, bringing the total number of homogeneously analyzed stars to almost 2700 F, G, and K dwarfs. To ensure consistency between the catalogs, we performed an analysis of our ability to recover parameters as a function of signal-to-noise ratio (S/N) and present individual uncertainties as well as functions to calculate uncertainties for parameters derived from lower S/N spectra. With the updated parameters, we used isochrone fitting to derive new radii, masses, and ages for the stars. We use our abundance analysis to support the finding that the radius gap is likely a result of evolution rather than the result of primordial compositional differences between the two populations.
Cone search capability for table J/ApJS/237/38/abund (Spectroscopically determined stellar properties and abundances (tables 3-6))