Data from: Sensory trait variation contributes to biased dispersal of threespine stickleback in flowing water

Gene flow is widely thought to homogenize spatially separate populations, eroding effects of divergent selection. The resulting theory of ‘migration-selection balance’ is predicated on a common assumption that all genotypes are equally prone to dispersal. If instead certain genotypes are disproportionately likely to disperse, then migration can actually promote population divergence. For example, previous work has shown that threespine stickleback (Gasterosteus aculeatus) differ in their propensity to move up- or down-stream (‘rheotactic response’), which may facilitate genetic divergence between adjoining lake and stream populations of stickleback. Here, we demonstrate that intraspecific variation in a sensory system (superficial neuromast lines) contributes to this variation in swimming behavior in stickleback. First, we show that intact neuromasts are necessary for a typical rheotactic response. Next, we showed that there is heritable variation in the number of neuromasts, and that stickleback with more neuromasts are more likely to move down-stream. Variation in pectoral fin shape contributes to additional variation in rheotactic response. These results illustrate how within-population quantitative variation in sensory and locomotor traits can influence dispersal behavior, thereby biasing dispersal between habitats and favoring population divergence.

Identifier
DOI https://doi.org/10.5061/dryad.t79r4
PID https://nbn-resolving.org/urn:nbn:nl:ui:13-nd-zkhf
Metadata Access https://easy.dans.knaw.nl/oai?verb=GetRecord&metadataPrefix=oai_datacite&identifier=oai:easy.dans.knaw.nl:easy-dataset:96789
Provenance
Creator Jiang, Yuexin; Peichel, Catherine L.; Ling, Fei; Bolnick, Daniel I.
Publisher Data Archiving and Networked Services (DANS)
Publication Year 2016
Rights info:eu-repo/semantics/openAccess; License: http://creativecommons.org/publicdomain/zero/1.0; http://creativecommons.org/publicdomain/zero/1.0
OpenAccess true
Representation
Resource Type Dataset
Discipline Life Sciences; Medicine