Chemical abundances in 849 exoplanet hosts stars

DOI

The imprints of stellar nucleosynthesis and chemical evolution of the galaxy can be seen in different stellar populations, with older generation stars showing higher {alpha}-element abundances and the later generations becoming enriched with iron-peak elements. The evolutionary connections and chemical characteristics of circumstellar disks, stars, and their planetary companions can be inferred by studying the interdependence of planetary and host star properties. Numerous studies in the past have confirmed that high-mass giant planets are commonly found around metal-rich stars, while the stellar hosts of low-mass planets have a wide range of metallicity. In this work, we analyzed the detailed chemical abundances for a sample of >900 exoplanet hosting stars drawn from different radial velocity and transit surveys. We correlate the stellar abundance trends for {alpha}- and iron-peak elements with the planets' mass. We find the planet mass-abundance correlation to be primarily negative for {alpha}-elements and marginally positive or zero for the iron-peak elements, indicating that stars hosting giant planets are relatively younger. This is further validated by the age of the host stars obtained from isochrone fitting. The later enrichment of protoplanetary material with iron and iron-peak elements is also consistent with the formation of the giant planets via the core accretion process. A higher metal fraction in the protoplanetary disk is conducive to rapid core growth, thus providing a plausible route for the formation of giant planets. This study, therefore, indicates that the observed trends in stellar abundances and planet mass are most likely a natural consequence of Galactic chemical evolution.

Cone search capability for table J/AJ/164/60/table2 (Key parameters of exoplanet host stars used in this study)

Identifier
DOI http://doi.org/10.26093/cds/vizier.51640060
Source https://dc.g-vo.org/rr/q/lp/custom/CDS.VizieR/J/AJ/164/60
Related Identifier https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/164/60
Related Identifier http://vizier.cds.unistra.fr/viz-bin/VizieR-2?-source=J/AJ/164/60
Metadata Access http://dc.g-vo.org/rr/q/pmh/pubreg.xml?verb=GetRecord&metadataPrefix=oai_b2find&identifier=ivo://CDS.VizieR/J/AJ/164/60
Provenance
Creator Swastik C.; Banyal R.K.; Narang M.; Manoj P.; Sivarani T.; Rajaguru S.P.,Unni A.; Banerjee B.
Publisher CDS
Publication Year 2022
Rights https://cds.unistra.fr/vizier-org/licences_vizier.html
OpenAccess true
Contact CDS support team <cds-question(at)unistra.fr>
Representation
Resource Type Dataset; AstroObjects
Discipline Astrophysics and Astronomy; Exoplanet Astronomy; Interdisciplinary Astronomy; Natural Sciences; Physics