Seawater carbonate chemistry and biological processes of Mytilus edulis during experiments, 2011, supplement to: Bechmann, Renée Katrin; Taban, Ingrid Christina; Westerlund, Stig; Godal, Brit Fjone; Arnberg, Maj; Vingen, Sjur; Ingvarsdottir, Anna; Baussant, Thierry (2011): Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). Journal of Toxicology and Environmental Health-Part A-Current Issues, 74(7-9), 424-438

DOI

Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO2) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO2 at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO3), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).

Identifier
DOI https://doi.org/10.1594/PANGAEA.763290
Related Identifier https://doi.org/10.1080/15287394.2011.550460
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.763290
Provenance
Creator Bechmann, Renée Katrin; Taban, Ingrid Christina; Westerlund, Stig; Godal, Brit Fjone; Arnberg, Maj; Vingen, Sjur; Ingvarsdottir, Anna; Baussant, Thierry
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Nisumaa, Anne-Marin
Publication Year 2011
Funding Reference Seventh Framework Programme; Sixth Framework Programme
Rights Creative Commons Attribution 3.0 Unported
OpenAccess true
Representation
Language English
Resource Type Supplementary Dataset
Format text/tab-separated-values
Size 28123 data points
Discipline Earth System Research