Ba/Ca ratios in benthic foraminifera from recent core tops

DOI

The carbon isotope ratio (delta13C) and cadmium content (Cd/Ca) of benthic foraminifera shells have been used to reconstruct deep-water circulation patterns of the glacial oceans. These tracers co-vary with phosphorus in the modern ocean because they are nearly quantitatively regenerated from sinking biological debris in the upper water column. Hence they can be used to reconstruct the distribution of labile nutrients in glacial water masses. Independent constraints on glacial deep-ocean circulation patterns could be provided by a tracer of the distribution of silica and alkalinity, the deeply regenerated constituents of planktonic hard parts. Barium shares key aspects of its behaviour with these refractory nutrients because it is removed from solution in surface waters and incorporated into sinking particles which slowly dissolve deep in the water column and in the sediments. The fractionation of Ba between deep-water masses of the major ocean basins is largely controlled by thermohaline circulation patterns, so Ba conforms to different boundary conditions from Cd and 13C. As Ba substitutes into trigonal carbonates, it is a potential palaeoceano-graphic tracer if the Ba content of foraminifera shells reflects ambient dissolved Ba concentrations. Here we present data from Recent core-top benthic foraminifera which indicate that the Ba content of some recent calcitic benthic foraminifera does co-vary with bottom-water Ba.

Supplement to: Lea, David W; Boyle, Edward A (1989): Barium content of benthic foraminifera controlled by bottom-water composition. Nature, 338, 751-753

Identifier
DOI https://doi.org/10.1594/PANGAEA.399803
Related Identifier https://doi.org/10.1038/338751a0
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.399803
Provenance
Creator Lea, David W
Publisher PANGAEA
Publication Year 1989
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 288 data points
Discipline Earth System Research
Spatial Coverage (-106.183W, -54.550S, 158.800E, 78.000N)