Seawater carbonate chemistry and otolith development and chemistry in a diadromous fish

DOI

Ocean acidification threatens marine ecosystems by altering ocean chemistry and calcification processes in marine organisms. This study investigated the effects of predicted future CO2 levels, under varying temperature levels, on otolith development (size and shape) and chemistry, with the latter aimed at developing a chemical tracer of environmental pCO2. Juvenile barramundi (Lates calcarifer), a diadromous fish species, were reared in ambient (pCO2: 640 µatm; pH: 7.9) and elevated (pCO2: 1490 µatm; pH: 7.5) pCO2 treatments representing current and projected coastal systems crossed with three temperature levels (26 °C, 30 °C and 34 °C) for 42 days. Otolith shape and size parameters (length, width, perimeter and area) were measured and element concentrations (Na, Mg, Sr, Ba, Li, Mn and B) were quantified using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA ICP-MS). There was an interactive effect of elevated pCO2 and temperature on otolith shape and perimeter, whereas otolith chemistry did not vary among treatments. This study demonstrates that combined elevated pCO2 and temperature can affect the development of important internal structures in diadromous fish, but also suggests that otolith elemental chemistry was not a suitable tracer for pCO2 histories in fish. Future climate change conditions affect an important auditory and balance organ; consequently, rising CO2 levels may interfere with sensory function.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2018-03-28.

Supplement to: Martino, Jasmin; Doubleday, Z A; Woodcock, Skye H; Gillanders, Bronwyn M (2017): Elevated carbon dioxide and temperature affects otolith development, but not chemistry, in a diadromous fish. Journal of Experimental Marine Biology and Ecology, 495, 57-64

Identifier
DOI https://doi.org/10.1594/PANGAEA.887765
Related Identifier https://doi.org/10.1016/j.jembe.2017.06.003
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.887765
Provenance
Creator Martino, Jasmin ORCID logo; Doubleday, Z A ORCID logo; Woodcock, Skye H; Gillanders, Bronwyn M ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2017
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 16808 data points
Discipline Earth System Research