Seawater carbonate chemistry and vertical movement of stone crab larvae

DOI

Anthropogenic activities are increasing ocean temperature and decreasing ocean pH. Some coastal habitats are experiencing increases in organic runoff, which when coupled with a loss of vegetated coastline can accelerate reductions in seawater pH. Marine larvae that hatch in coastal habitats may not have the ability to respond to elevated temperature and changes in seawater pH. This study examined the response of Florida stone crab (Menippe mercenaria) larvae to elevated temperature (30°C control and 32°C treatment) and CO2-induced reductions in pH (8.05 pH control and 7.80 pH treatment). We determined whether those singular and simultaneous stressors affect larval vertical movement at two developmental stages. Geotactic responses varied between larval stages. The direction and rate of the vertical displacement of larvae were dependent on pH rather than temperature. Stage III larvae swam upwards under ambient pH conditions, but swam downwards at a faster rate under reduced pH. There was no observable change in the directional movement of Stage V larvae. The reversal in orientation by Stage III larvae may limit larval transport in habitats that experience reduced pH and could pose challenges for the northward dispersal of stone crabs as coastal temperatures warm.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2019-12-17.

Identifier
DOI https://doi.org/10.1594/PANGAEA.910106
Related Identifier https://doi.org/10.1098/rsbl.2019.0414
Related Identifier https://doi.org/10.6084/m9.figshare.c.4764578
Related Identifier https://CRAN.R-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.910106
Provenance
Creator Gravinese, Philip M ORCID logo; Enochs, I C; Manzello, Derek P ORCID logo; van Woesik, Robert ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2019
Rights Creative Commons Attribution 4.0 International; https://creativecommons.org/licenses/by/4.0/
OpenAccess true
Representation
Resource Type Dataset
Format text/tab-separated-values
Size 18960 data points
Discipline Earth System Research
Spatial Coverage (-81.592 LON, 26.163 LAT)