Behavioral responses of brown shrimp (Crangon crangon) to reduced seawater pH following simulated leakages from sub-sea geological storage of CO2, supplement to: Bamber, Shaw D; Westerlund, Stig (2016): Behavioral responses of brown shrimp (Crangon crangon) to reduced seawater pH following simulated leakages from sub-sea geological storage of CO. Journal of Toxicology and Environmental Health-Part A-Current Issues, 79(13-15), 526-537

DOI

Large-scale storage of CO2 within sub-sea geological formations is a viable option for reducing the volume of this greenhouse gas released directly to the atmosphere from anthropogenic activities. Risks to benthic marine life following possible leakage of gas through the seabed from this carbon capture and storage (CCS) initiative are not yet well established. This study examined behavior (activity patterns) in brown shrimp (Crangon crangon), exposed to a range of reduced seawater pH conditions (7.6, 7, or 6.5) simulating leakage scenarios of varying scales. Brown shrimp have an endogenous rhythmicity associated with their activity, which dictates they are most active during hours of darkness, presumably as protection against vision-dependent predators. This endogenous rhythm in activity continues to be expressed when shrimp are held under constant low-light conditions in the lab and provides an ecologically relevant endpoint to measure when examining the influence of reduced pH on the behavior of these animals. No marked differences in activity pattern were observed between control shrimp maintained at pH 8.1 and those at pH 7.6. However, changes in activity were evident at pH 7 and pH 6.5, where significant shifts in timing and intensity of activity occurred. There was an unexpected increase in activity within periods of expected light, probably signaling efforts by shrimp to migrate away from reduced seawater pH conditions. The loss of this important member of the benthic community due to migration may have important consequences for many of the resilient species that remain.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2017-02-23.

Identifier
DOI https://doi.org/10.1594/PANGAEA.872635
Related Identifier https://doi.org/10.1080/15287394.2016.1171979
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.872635
Provenance
Creator Bamber, Shaw D; Westerlund, Stig
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Language English
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 990 data points
Discipline Earth System Research