Photophysiological responses of Southern Ocean phytoplankton to changes in CO2 concentrations: Short-term versus acclimation effects

DOI

The present study examines how different pCO2 acclimations affect the CO2- and light-dependence of photophysiological processes and O2 fluxes in four Southern Ocean (SO) key phytoplankton species. We grew Chaetoceros debilis (Cleve), Pseudo-nitzschia subcurvata (Hasle), Fragilariopsis kerguelensis (O'Meara) and Phaeocystis antarctica (Karsten) under low (160 µatm) and high (1000 ?atm) pCO2. The CO2- and light-dependence of fluorescence parameters of photosystem II (PSII) were determined by means of a fluorescence induction relaxation system (FIRe). In all tested species, nonphotochemical quenching (NPQ) is the primary photoprotection strategy in response to short-term exposure to high light or low CO2 concentrations. In C. debilis and P. subcurvata, PSII connectivity (p) and functional absorption cross-sections of PSII in ambient light (sigma PSII') also contributed to photoprotection while changes in re-oxidation times of Qa acceptor (tQa) were more significant in F. kerguelensis. The latter was also the only species being responsive to high acclimation pCO2, as these cells had enhanced relative electron transport rates (rETRs) and sigma PSII' while tQa and p were reduced under short-term exposure to high irradiance. Low CO2-acclimated cells of F. kerguelensis and all pCO2 acclimations of C. debilis and P. subcurvata showed dynamic photoinhibition with increasing irradiance. To test for the role and presence of the Mehler reaction in C. debilis and P. subcurvata, the light-dependence of O2 fluxes was estimated using membrane inlet mass spectrometry (MIMS). Our results show that the Mehler reaction is absent in both species under the tested conditions. We also observed that dark respiration was strongly reduced under high pCO2 in C. debilis while it remained unaltered in P. subcurvata. Our study revealed species-specific differences in the photophysiological responses to pCO2, both on the acclimation as well as the short-term level.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-07-01.

Supplement to: Trimborn, Scarlett; Thoms, Silke; Petrou, Katherina; Kranz, Sven A; Rost, Björn (2014): Photophysiological responses of Southern Ocean phytoplankton to changes in CO2 concentrations: Short-term versus acclimation effects. Journal of Experimental Marine Biology and Ecology, 451, 44-54

Identifier
DOI https://doi.org/10.1594/PANGAEA.833713
Related Identifier https://doi.org/10.1016/j.jembe.2013.11.001
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.833713
Provenance
Creator Trimborn, Scarlett ORCID logo; Thoms, Silke; Petrou, Katherina ORCID logo; Kranz, Sven A ORCID logo; Rost, Björn ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2014
Funding Reference German Research Foundation https://doi.org/10.13039/501100001659 Crossref Funder ID 5472008 https://gepris.dfg.de/gepris/projekt/5472008 Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 36257 data points
Discipline Earth System Research