Selective mortality associated with variation in CO2 tolerance in a marine fish

DOI

Predicted future CO2 levels can affect reproduction, growth, and behaviour of many marine organisms. However, the capacity of species to adapt to predicted changes in ocean chemistry is largely unknown. We used a unique field-based experiment to test for differential survival associated with variation in CO2 tolerance in a wild population of coral-reef fishes. Juvenile damselfish exhibited variation in their response to elevated (700 µatm) CO2 when tested in the laboratory and this influenced their behaviour and risk of mortality in the wild. Individuals that were sensitive to elevated CO2 were more active and move further from shelter in natural coral reef habitat and, as a result, mortality from predation was significantly higher compared with individuals from the same treatment that were tolerant of elevated CO2. If individual variation in CO2 tolerance is heritable, this selection of phenotypes tolerant to elevated CO2 could potentially help mitigate the effects of ocean acidification.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-06-19.

Supplement to: Munday, Philip L; McCormick, Mark I; Meekan, Mark; Dixson, Danielle L; Watson, Sue-Ann; Chivers, Douglas P; Ferrari, Maud C O (2012): Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidification, 1, 1-5

Identifier
DOI https://doi.org/10.1594/PANGAEA.833429
Related Identifier https://doi.org/10.2478/oac-2012-0001
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.833429
Provenance
Creator Munday, Philip L ORCID logo; McCormick, Mark I ORCID logo; Meekan, Mark ORCID logo; Dixson, Danielle L ORCID logo; Watson, Sue-Ann ORCID logo; Chivers, Douglas P ORCID logo; Ferrari, Maud C O
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2012
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 627 data points
Discipline Earth System Research
Spatial Coverage (145.459 LON, -14.669 LAT); Lizard Island, northern Great Barrier Reef