Seawater carbonate chemistry and survival, health, growth, and meat quality of black sea bream (Acanthopagrus schlegelii)


Acidification (OA), a global threat to the world's oceans, is projected to significantly grow if CO2 continues to be emitted into the atmosphere at high levels. This will result in a slight decrease in pH. Since the latter is a logarithmic scale of acidity, the higher acidic seawater is expected to have a tremendous impact on marine living resources in the long-term. An 8-week laboratory experiment was designed to assess the impact of the projected pH in 2100 and beyond on fish survival, health, growth, and fish meat quality. Two projected scenarios were simulated with the control treatment, in triplicates. The control treatment had a pH of 8.10, corresponding to a pCO2 of 321.37 ± 11.48 µatm. The two projected scenarios, named Predict_A and Predict_B, had pH values of 7.80-pCO2 = 749.12 ± 27.03 and 7.40-pCO2 = 321.37 ± 11.48 µatm, respectively. The experiment was preceded by 2 weeks of acclimation. After the acclimation, 20 juvenile black sea breams (Acanthopagrus schlegelii) of 2.72 ± 0.01 g were used per tank. This species has been selected mainly due to its very high resistance to diseases and environmental changes, assuming that a weaker fish resistance will also be susceptibly affected. In all tanks, the fish were fed with the same commercial diet. The seawater's physicochemical parameters were measured daily. Fish samples were subjected to physiological, histological, and biochemical analyses. Fish growth, feeding efficiency, protein efficiency ratio, and crude protein content were significantly decreased with a lower pH. Scanning electron microscopy revealed multiple atrophies of microvilli throughout the small intestine's brush border in samples from Predict_A and Predict_B. This significantly reduced nutrient absorption, resulting in significantly lower feed efficiency, lower fish growth, and lower meat quality. As a result of an elevated pCO2 in seawater, the fish eat more than normal but grow less than normal. Liver observation showed blood congestion, hemorrhage, necrosis, vacuolation of hepatocytes, and an increased number of Kupffer cells, which characterize liver damage. Transmission electron microscopy revealed an elongated and angular shape of the mitochondrion in the liver cell, with an abundance of peroxisomes, symptomatic of metabolic acidosis.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-04-24.

Related Identifier
Related Identifier
Metadata Access
Creator Tegomo, Fabrice Arnaud; Zhong, Zhiwen; Njomoue, Achille Pandong; Okon, Samuel Ukpong; Ullah, Sami; Gray, Neveen Anandi; Chen, Kai; Sun, Y; Xiao, Jinxing; Wang, Lei; Ye, Ying; Huang, Hui; Shao, Qingjun
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2022
Rights Creative Commons Attribution 4.0 International;
OpenAccess true
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 651 data points
Discipline Earth System Research