Long-term acclimation to elevated pCO2 alters carbon metabolism and reduces growth in the Antarctic diatom Nitzschia lecointei

DOI

Increasing atmospheric CO2 levels are driving changes in the seawater carbonate system, resulting in higher pCO2 and reduced pH (ocean acidification). Many studies on marine organisms have focused on short-term physiological responses to increased pCO2, and few on slow-growing polar organisms with a relative low adaptation potential. In order to recognize the consequences of climate change in biological systems, acclimation and adaptation to new environments are crucial to address. In this study, physiological responses to long-term acclimation (194 days, approx. 60 asexual generations) of three pCO2 levels (280, 390 and 960 µatm) were investigated in the psychrophilic sea ice diatom Nitzschia lecointei. After 147 days, a small reduction in growth was detected at 960 µatm pCO2. Previous short-term experiments have failed to detect altered growth in N. lecointei at high pCO2, which illustrates the importance of experimental duration in studies of climate change. In addition, carbon metabolism was significantly affected by the long-term treatments, resulting in higher cellular release of dissolved organic carbon (DOC). In turn, the release of labile organic carbon stimulated bacterial productivity in this system. We conclude that long-term acclimation to ocean acidification is important for N. lecointei and that carbon overconsumption and DOC exudation may increase in a high-CO2 world.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-11-30.

Identifier
DOI https://doi.org/10.1594/PANGAEA.869122
Related Identifier https://doi.org/10.1098/rspb.2015.1513
Related Identifier https://doi.org/10.5061/dryad.h838q
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.869122
Provenance
Creator Torstensson, Anders; Hedblom, Mikael; Mattsdotter Björk, M y; Chierici, Melissa; Wulff, Angela
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Contributor Yang, Yan
Publication Year 2015
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Language English
Resource Type Dataset
Format text/tab-separated-values
Size 18416 data points
Discipline Earth System Research