Boron isotope composition and seawater characteristics of cold water scleratinian corals

DOI

The boron isotope systematics has been determined for azooxanthellate scleractinian corals from a wide range of both deep-sea and shallow-water environments. The aragonitic coral species, Caryophyllia smithii, Desmophyllum dianthus, Enallopsammia rostrata, Lophelia pertusa, and Madrepora oculata, are all found to have relatively high d11B compositions ranging from 23.2 per mil to 28.7 per mil. These values lie substantially above the pH-dependent inorganic seawater borate equilibrium curve, indicative of strong up-regulation of pH of the internal calcifying fluid (pH(cf)), being elevated by ~0.6-0.8 units (Delta pH) relative to ambient seawater. In contrast, the deep-sea calcitic coral Corallium sp. has a significantly lower d11B composition of 15.5 per mil, with a corresponding lower Delta pH value of ~0.3 units, reflecting the importance of mineralogical control on biological pH up-regulation.The solitary coral D. dianthus was sampled over a wide range of seawater pH(T) and shows an approximate linear correlation with Delta pH(Desmo) = 6.43 - 0.71 pH(T) (r2 = 0.79). An improved correlation is however found with the closely related parameter of seawater aragonite saturation state, where Delta pH(Desmo) = 1.09 - 0.14 Omega(arag) (r2 = 0.95), indicating the important control that carbonate saturation state has on calcification. The ability to up-regulate internal pH(cf), and consequently Omega(cf), of the calcifying fluid is therefore a process present in both azooxanthellate and zooxanthellate aragonitic corals, and is attributed to the action of Ca2+ -ATPase in modulating the proton gradient between seawater and the site of calcification. These findings also show that the boron isotopic compositions (d11Bcarb) of aragonitic corals are highly systematic and consistent with direct uptake of the borate species within the biologically controlled extracellular calcifying medium.

Data extracted in the frame of a joint ICSTI/PANGAEA IPY effort, see http://doi.pangaea.de/10.1594/PANGAEA.150150

Supplement to: McCulloch, Malcolm T; Trotter, Julie; Montagna, Paolo; Falter, James L; Dunbar, Robert G; Freiwald, André; Försterra, Günter; López Correa, Matthias; Maier, Cornelia; Rüggeberg, Andres; Taviani, Marco (2012): Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochimica et Cosmochimica Acta, 87, 21-34

Identifier
DOI https://doi.org/10.1594/PANGAEA.816120
Related Identifier https://doi.org/10.1016/j.gca.2012.03.027
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.816120
Provenance
Creator McCulloch, Malcolm T ORCID logo; Trotter, Julie (ORCID: 0000-0002-0505-488X); Montagna, Paolo ORCID logo; Falter, James L ORCID logo; Dunbar, Robert G ORCID logo; Freiwald, André; Försterra, Günter; López Correa, Matthias ORCID logo; Maier, Cornelia ORCID logo; Rüggeberg, Andres ORCID logo; Taviani, Marco ORCID logo
Publisher PANGAEA
Publication Year 2012
Funding Reference Seventh Framework Programme https://doi.org/10.13039/100011102 Crossref Funder ID 226354 https://cordis.europa.eu/project/id/226354 Hotspot Ecosystem Research and Mans Impact On European Seas
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Publication Series of Datasets; Collection
Format application/zip
Size 2 datasets
Discipline Earth System Research
Spatial Coverage (-163.136W, -44.328S, 147.280E, 64.109N)
Temporal Coverage Begin 1997-01-01T00:00:00Z
Temporal Coverage End 2006-10-15T07:11:00Z