Riverine discharges impact physiological traits and carbon sources for shell carbonate in the marine intertidal mussel Perumytilus purpuratus

DOI

Anthropogenic modification watersheds and climate change have altered export from fluvial systems causing changes to the carbonate chemistry of river-influenced near shore environments. To determine the possible effects of riverine discharges on the mussel Perumytilus purpuratus, we performed in situ transplant experiments between river-influenced and open coastal habitats with contrasting seawater carbonate chemistries (i.e., pCO2, pH, Omega ar) across four regions covering a wide latitudinal range (32°55'S-40°10'S). The river-influenced habitats selected for transplant experiments were different than open coastal habitats; with higher pCO2 (354-1313 µatm), lower pH (7.6?7.9) and Omega ar values (0.4?1.4) than in open coastal area. Growth, calcification, metabolism were measured in a reciprocal transplant experiment to determine physiological responses associated with river-influenced sites and non-influenced control sites. Growth and calcification rates were higher in river-influenced habitats; however the organisms in this area also had lower metabolic rates, possibly due to enhanced food supply from river systems. Further analysis of carbon isotopic composition (delta 13C) indicated that the relative contribution of seawater dissolved inorganic carbon (DIC) to the carbonate shells of P. purpuratus was much higher than respiratory carbon. Nevertheless, P. purpuratus incorporated between 7% and 26% of metabolic carbon in the shell depending on season. There was a strong, significant relationship between delta 13C POC and delta 13C Tissue, which likely influenced the isotopic composition of the shell carbon.

In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2017-01-12.

Supplement to: Pérez, Claudia; Lagos, Nelson A; Saldias, Gonzalo S; Waldbusser, George G; Vargas, C A (2016): Riverine discharges impact physiological traits and carbon sources for shell carbonate in the marine intertidal mussel Perumytilus purpuratus. Limnology and Oceanography, 61(3), 969-983

Identifier
DOI https://doi.org/10.1594/PANGAEA.870757
Related Identifier https://doi.org/10.1002/lno.10265
Related Identifier https://cran.r-project.org/package=seacarb
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.870757
Provenance
Creator Pérez, Claudia; Lagos, Nelson A; Saldias, Gonzalo S; Waldbusser, George G (ORCID: 0000-0002-8334-580X); Vargas, C A ORCID logo
Publisher PANGAEA
Contributor Yang, Yan
Publication Year 2016
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Resource Type Supplementary Dataset; Dataset
Format text/tab-separated-values
Size 2066 data points
Discipline Earth System Research