Age estimations of calcareous nannofossil biohorizons of the middle Paleocene to early Eocene at ODP Site 208-1262 (Table 1, Appendix B), supplement to: Agnini, Claudia; Fornaciari, Eliana; Raffi, Isabella; Rio, Domenico; Röhl, Ursula; Westerhold, Thomas (2007): High-resolution nannofossil biochronology of middle Paleocene to early Eocene at ODP Site 1262: Implications for calcareous nannoplankton evolution. Marine Micropaleontology, 64(3-4), 215-248

DOI

Over the last several decades debates on the 'tempo and mode' of evolution have centered on the question whether morphological evolution preferentially occurs gradually or punctuated, i.e., with long periods of stasis alternating with short periods of rapid morphological change and generation of new species. Another major debate is focused on the question whether long-term evolution is driven by, or at least strongly influenced by changes in the environment, or by interaction with other life forms. Microfossils offer a unique opportunity to obtain the large datasets as well as the precision in dating of subsequent samples to study both these questions.We present high-resolution analyses of selected calcareous nannofossils from the deep-sea section recovered at ODP Site 1262 (Leg 208) in the South-eastern Atlantic. The studied section encompasses nannofossil Zones NP4–NP12 (equivalent to CP3–CP10) and Chrons C27r–C24n. We document more than 70 biohorizons occurring over an about 10 Myr time interval, (~62.5 Ma to ~52.5 Ma), and discuss their reliability and reproducibility with respect to previous data, thus providing an improved biostratigraphic framework, which we relate to magnetostratigraphic information, and present for two possible options of a new Paleocene stratigraphic framework based on cyclostratigraphy. This new framework enabled us to tentatively reconstruct steps in the evolution of early Paleogene calcareous nannoplankton through documentation of transitional morphotypes between genera and/or species and of the phylogenetic relations between the genera Fasciculithus, Heliolithus, Discoasteroides and Discoaster, as well as between Rhomboaster and Tribrachiatus. The exceptional record provided by the continuous, composite sequence recovered at Walvis Ridge allows us to describe the mode of evolution among calcareous nannoplankton: new genera and/or new species usually originated through branching of lineages via gradual, but relatively rapid, morphological transitions, as documented by the presence of intermediate forms between the end-member ancestral and descendant forms. Significant modifications in the calcareous nannofossil assemblages are often “related” to significant changes in environmental conditions, but the appearance of structural innovations and radiations within a single genus also occurred during “

Ages provided for three different solutions based on GPTS (Berggren et al., 1995; Lourens et al., 2004) and revised timescale (Westerhold et al., 2007 doi:10.1029/2006PA001322, Westerhold pers. communication)

Identifier
DOI https://doi.org/10.1594/PANGAEA.691457
Related Identifier https://doi.org/10.1016/j.marmicro.2007.05.003
Metadata Access https://ws.pangaea.de/oai/provider?verb=GetRecord&metadataPrefix=datacite4&identifier=oai:pangaea.de:doi:10.1594/PANGAEA.691457
Provenance
Creator Agnini, Claudia; Fornaciari, Eliana; Raffi, Isabella; Rio, Domenico; Röhl, Ursula; Westerhold, Thomas
Publisher PANGAEA - Data Publisher for Earth & Environmental Science
Publication Year 2007
Rights Creative Commons Attribution 3.0 Unported; https://creativecommons.org/licenses/by/3.0/
OpenAccess true
Representation
Language English
Resource Type Supplementary Dataset
Format text/tab-separated-values
Size 1676 data points
Discipline Earth System Research
Spatial Coverage (1.577 LON, -27.186 LAT); Walvis Ridge, Southeast Atlantic Ocean
Temporal Coverage Begin 2003-03-24T00:00:00Z
Temporal Coverage End 2003-03-29T00:00:00Z